Damascene method employing composite etch stop layer

Semiconductor device manufacturing: process – Chemical etching – Vapor phase etching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S710000, C438S712000, C438S720000

Reexamination Certificate

active

06734110

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of conductor layers for interconnection within microelectronics fabrications. More specifically, the invention relates to the field of damascene methods for forming interconnection layers within microelectronics fabrications.
2. Description of the Related Art
Microelectronics fabrications employ conductor layers formed into patterned lines to interconnect the devices from which the fabrications are made. As the dimensions of microelectronics fabrications have become smaller, the density of interconnections has increased and the requirements placed upon interconnections have become more stringent. The number and complexity of interconnections dictate that multiple levels of interconnections be employed in practical microelectronics fabrications. There has developed a need for multi-level interconnection wiring for microelectronics fabrications with increasing demands and constraints placed on materials and methods.
In order to avoid increased electrical resistance as dimensions and hence conductor cross-sectional areas decrease, the art of microelectronics fabrication has resorted to conductor materials having higher electrical conductivity, such as, for example, copper. In addition, methods to reduce electrical resistance at contact areas between interconnection levels and via contacts have been pursued. Finally, fabrication methods and materials for forming multi-level interconnection layers which afford surface planarity as the number of interconnection levels increases have been developed, since the patterning of conductor layers by subtractive etching of conductor layers formed over surfaces leads to resulting raised surface profiles of the patterned conductor layer, which may cause subsequent fabrication problems and lead to reliability concerns.
Methods and materials providing high density interconnections with low electrical resistance have been developed which are generally satisfactory for meeting the requirements of microelectronics fabrication. These include forming the interconnection layer patterns from copper metal because of its intrinsically high electrical conductivity. The copper lines may be formed within depressions or trenches within a dielectric layer employing the method of “damascene” or inlaid pattern formation to provide a co-planar surface of the inlaid copper line pattern and the surrounding dielectric layer. Such trench patterns are often etched into an interlevel metal dielectric (IMD) layer employing photolithographic methods including an etch stop layer formed over the underlying via contact hole filled with a conductor material “stud” or “plug” to form a damascene stacked conductor interconnection layer. Such damascene stacked conductor interconnection layers are not without problems, however.
For example, the use of copper metal as the via contact hole fill or stud to form an integral damascene stacked conductor layer is not feasible at the first level of contact, to the semiconductor device itself, since copper acts as a deleterious material in semiconductor devices with degrading effect on device operation. Thus it is necessary to employ a different metal such as tungsten for the via contact hole stud. In forming contact between the overlying copper layer and the tungsten stud, there are difficulties with conventional chemical mechanical polish (CMP) planarization of the tungsten stud and subsequent formation and etching of an IMD layer in which the copper lines are to be inlaid. This is particularly true if the planarization of the tungsten stud by harsh chemical exposure removes or damages the etch stop layer needed for the trench etching.
It is therefore towards the goal of forming improved multi-level conductor layers employing damascene methods and various conductor materials that the present invention is more generally directed.
Various methods have been disclosed for formation of damascene interconnection conductor layers with etch stop layers within semiconductor microelectronics fabrications.
For example, Kano, in U.S. Pat. No. 5,380,679, discloses a method for forming a multi-level conductor wiring structure in a microelectronics fabrication affording improved adhesion between layers with no additional photolithographic steps. The method employs an intermediate bonding conductor layer to improve adhesion between the component sub-layers which form the main part of the multilevel conductor structure. The conductor layers are formed by electroplating.
Further, Woo et al., in U.S. Pat. No. 5,451,543, disclose a method for forming vertical sidewalls when etching via contact holes through intermediate dielectric layers over conductor lines and lands. The method employs an etch stop layer which prevents resputtering which tends to form non-vertical sidewall profiles.
Finally, Cronin, in U.S. Pat. No. 5,818,110, discloses a method for forming multi-layer dual damascene interconnection layers without requiring interlock vias. The method employs etched via contact hole at locations such that wide and narrow openings are available. When refilled with a conformal deposited conductor layer of appropriate thickness, the narrow openings are completely gap filled, while the wide openings are only partially filled with central openings. Subsequent CMP planarization leaves the narrow holes filled with a conductor plug to the next conductor level, while the wide holes are non-conductor filled and not available for next-level interconnection.
Desirable in the art of microelectronics fabrication are additional methods for fabrication of improved multi-level conductor interconnection structures wherein there is formed a low resistance, high strength bond between the via hole contact conductor plug and the inlaid conductor wiring layer. Also desirable are damascene methods of formation whereby the underlying conductor plug and etch stop layer experiences limited damage during formation of the damascene structure.
It is towards these goals that the present invention is generally directed.
SUMMARY OF THE INVENTION
A first object of the present invention is to provide a method for forming a damascene multi-level conductor interconnection layer upon a substrate employed within a microelectronics fabrication with improved properties.
A second object of the present invention is to provide a method for forming a damascene multi-level conductor interconnection layer in accord with the first object of the present invention, where the conductor interconnection layer is formed of multi-level conductor materials for the underlying conductor stud portion and the overlying inlaid portion of the damascene conductor layer with attenuated degradation of the conductor layers due to processing conditions.
A third object of the present invention is to provide in accord with the first object of the present invention, and the second object of the present invention, a method which is readily commercially implemented.
In accord with the objects of the present invention, there is provided a method for fabrication within a substrate employed within a microelectronics fabrication a damascene interconnection method with inhibited/attenuated damage to a conductor stud layer accessed within a trench when forming the interconnection trench pattern within a dielectric layer overlying the stud layer. To practice the invention, there is first provided a substrate having a contact region formed therein employing a first intermediate metal dielectric (IMD) layer having a pattern of via contact holes etched through the IMD layer filled with studs of conductor material. There is then planarized the surface of the IMD contact region. There is then formed over the planarized first IMD layer contact region a blanket composite etch stop layer. There is then formed over the blanket composite etch stop layer a second inter-level metal dielectric (IMD). A photoresist mask of the interconnection layer trench pattern is then formed and employed to transfer the trench pattern by subtractive etching into the sec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Damascene method employing composite etch stop layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Damascene method employing composite etch stop layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Damascene method employing composite etch stop layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3189149

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.