Current-induced magnetic switching device and memory...

Static information storage and retrieval – Systems using particular element – Magnetic thin film

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S143000

Reexamination Certificate

active

06256223

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a switching device, and more particularly to a current-induced magnetic switching device for use with a nonvolatile memory array that uses magnetic memory elements as the individual memory cells.
2. Description of the Related Art
Magnetic random access memory (MRAM or typically referred to as “MagRam”) technology is a solid state device technology using magnetic thin film elements as a storage mechanism. The storage mechanism relies on the relative orientation of the magnetization of two electrodes, and on the ability to discern this orientation by electrical means.
MRAM arrays include an array of magnetic memory cells positioned at the intersections of wordlines and bitlines. Generally, each cell includes a magnetically changeable or “free” region, and a proximate magnetically reference region, arranged into a magnetic tunnel junction (“MTJ”) device (e.g., the term “reference region” is used broadly herein to denote any type of region which, in cooperation with the free or changeable region, results in a detectable state of the device as a whole).
Generally, the principle underlying storage of data in such cells is the ability to change the relative orientation of the magnetization of the free and reference regions by changing the direction of magnetization along the easy axis (“EA”) of the free region, and the ability to thereafter read this relative orientation difference.
More particularly, an MRAM cell is written by reversing the free region magnetzation using applied bi-directional electrical and resultant magnetic stimuli via its receive bitline and wordline.
The MRAM cell is later read by measuring the resultant tunneling resistance between the bitline and wordline, which assumes one of two values depending on the relative orientation of the magnetization of the free region with respect to the reference region. If the free region is modeled as a simple elemental magnet having a direction of magnetization which is free to rotate but with a strong preference for aligning in either direction along its easy axis (+EA or −EA), and if the reference region is a similar elemental magnet but having a direction of magnetization fixed in the +EA direction, then two states (and therefore the two possible tunneling resistance values) are defined for the cell: aligned (+EA/+EA) and and-aligned (−EM +EA).
Thus, in operation as a memory device, the MRAM device can be read by measuring the tunneling resistance, thereby to infer the magnetization state of the storage layer with respect to the fixed layer. The MRAM can be written by reversing free layer magnetization using external magnetic fields. If the free layer is imagined as a simple elemental magnet which is free to rotate but with a strong energetic preference for aligning parallel to the X axis, and if the pinned layer is a similar elemental magnet but frozen in the +X direction, then there are at least two states possible for the device (e.g., aligned and anti-aligned) (i.e., in +X or −X directions).
Thus, a magnetic random access memory (RAM) requires write operations on small ferromagnetic elements. The conventional way of write-addressing has been to use an x-y cross-current excitation, which requires large write current, demands stringent magnetic switching characteristic from the memory element, and has cross-talk problems upon the increase of memory density.
Further, the conventional structures and methods do not allow for high packing density without cross-talk. Further, the driving circuits become complex due to the x-y selective magnetic-field induced write operation. Thus, conventional magnetic random access memory (RAM) requires read-write operations on small ferromagnetic elements, and have many problems.
A mechanism for the direct switching of the magnetic memory element has been proposed in J. C. Slonczewski,
J. Magn. and Magn. Mat
. 159, L1 (1996), which is based on the theoretical prediction of a new effect due to interactions between spin-polarized conduction electron and the ferromagnetic moments of the electrodes. However, such a proposal was strictly theoretical.
Further, in M. Tsoi et al.,
Pins. Rev. Len.
, 80, 4281 (1998), a point-contact device was constructed to show an anomaly in its current-voltage characteristic, which could be interpreted as spin-wave excitation due to the momentum transfer effect mentioned above. However, such a model was strictly hypothetical.
Further, it is noted that recently in manganite trilayer junctions, large low-field magnetoresistance (MR), of up to an order of magnitude change in resistance, was observed at 14° K in 100 Oe. The junctions are made of epitaxial La
0.67
(Sr/Ca)
0.33
MnO
3
(LSMO or LCMO) thin fllm electrodes with a SrTiO
3
(STO) barrier. These manganites are expected to be half-metals when their ferromagnetic order is fully developed. Band calculations show that their minority band has a very low carrier concentration, making it prone to disorder-induced localization.
According to a spin-dependent tunneling model, a half-metallic metal-insulator-metal junction would exhibit large, almost infinite MR. However, the observed transport characteristics do not resemble a clean metal-insulator-metal tunneling junction. The resistance varies strongly with temperature, especially above 130° K. The MR decreases rapidly as temperatures increases, vanishing above 130° K, well below the Curie temperature of the thin film electrodes which is around 360° K. The MR is bias-dependent, suppressed by a voltage of around 0.2V. Inhomogeneides of transport current at the junction interface is suspected, and the exact mechanism for such large low-field MR is not well understood.
SUMMARY OF THE INVENTION
In view of the foregoing and other problems of the conventional structures and methods, an object of the present invention is to provide a structure and method which is optimal for small magnetic memory structure where magnetic switching thresholds are more stable than the conventional techniques.
Another object is to provide a write-operation that allows for high packing density without cross-talk.
A further object is to provide a structure in which simpler driving circuits are employed.
In a first aspect of the present invention, a magnetic switching device includes a first electrode, a second electrode, and a nanoparticle having a magnetic moment and being disposed therebetween, at least one of the first electrode and the second electrode including a magnetic material which has a net spin polarization in its conduction band for injecting, into the nanoparticle, an electrical current including a net spin polarization for overcoming the magnetic moment of said nanoparticle upon selection of a sufficient magnitude for the electrical current.
With the present invention, a magnetic switch is provided in which switching is caused by a current having a net spin which arises in one electrode of a two-electrode device having a magnetic nanoparticle therebetween. The one electrode includes a magnetic material including a net spin polarization in its conduction band. The magnetic interaction of the spin-polarized current can be used to rotate the magnetic moment of the nanoparticle, thereby switching the resistance state for current flow between the two electrodes.
Thus, with the unique and unobvious structure and technique of the present invention, the invention is optimized for small magnetic memory structures where magnetic switching thresholds are more stable than the conventional techniques. Further, high packing density without cross-talk is achieved. Moreover, simpler driving circuits may be employed with the invention as compared to the conventional structures and techniques.


REFERENCES:
patent: 5173873 (1992-12-01), Wu et al.
patent: 5251170 (1993-10-01), Daughton et al.
patent: 5329486 (1994-07-01), Lage
patent: 5541868 (1996-07-01), Prinz
patent: 5587943 (1996-12-01), Torok et al.
patent: 5650958 (1997-07-01), Gallagher et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Current-induced magnetic switching device and memory... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Current-induced magnetic switching device and memory..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Current-induced magnetic switching device and memory... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2520966

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.