Electronic digital logic circuitry – Superconductor – Tunneling device
Reexamination Certificate
2005-10-10
2009-11-17
Smith, Zandra (Department: 2822)
Electronic digital logic circuitry
Superconductor
Tunneling device
C257S030000
Reexamination Certificate
active
07619437
ABSTRACT:
A structure comprising (i) a first information device, (ii) a second information device, (iii) a first coupling element and (iv) a second coupling element is provided. The first information device has at least a first lobe and a second lobe that are in electrical communication with each other. The second information device and has at least a first lobe and a second lobe that are in electrical communication with each other. The first coupling element inductively couples the first lobe of the first information device to the first lobe of the second information device. The second coupling element inductively couples the first lobe of the first information device to the second lobe of the second information device.
REFERENCES:
patent: 4496854 (1985-01-01), Chi et al.
patent: 4937525 (1990-06-01), Daalmans
patent: 6627916 (2003-09-01), Amin et al.
patent: 6838694 (2005-01-01), Esteve et al.
patent: 2003/0071258 (2003-04-01), Zagoskin et al.
patent: 2003/0224753 (2003-12-01), Bremond et al.
patent: 2386426 (2001-05-01), None
Cosmelli et al, “Controllable Flux Coupling for the Integration of Flux Qubits,” arXiv:cond-mat/0403690v1, Mar. 29, 2004.
U.S. Appl. No. 60/638,600, Rose.
Averin, D.V., C. Bruder, 2003, “Variable Electrostatic Transformer: Controllable Coupling of Two Charge Qubits,” Phys. Rev. Lett. 91, 57003.
Blatter, G., V.B. Geshkenbein, L.B. Ioffe, 2001, “Design aspects of superconducting-phase quantum bits,” Phys. Rev. B 63, 174511.
Bocko, M.F., A.M. Herr, M.J. Feldman, 1997, “Prospects for Quantum Coherent Computation Using Superconducting Electronics,” IEEE Trans. App. Supercond. 7, pp. 3638-3641.
Butcher, J.R., 2002, “Advances in persistent-current qubit research: Inductively coupled qubits and novel biasing methods,” Graduate Thesis, Delft University of Technology.
Clarke, J., T.L. Robertson, B.L.T. Plourde, A. Garcia-Martinez, P.A. Reichardt, D.J. van Harlingen, B. Chesca, R. Kleiner, Y. Makhlin, G. Schön, A. Shnirman, F.K. Wilhelm, 2002, “Quiet Readout of Superconducting Flux States,” Phys. Scripta T102, pp. 173-177.
Cosmelli, C., M.G. Castellano, F. Chiarello, R. Leoni, D. Simeone, G. Torrioli, P. Carelli, 2004, “Controllable Flux Coupling for the Integration of Flux Qubits,” arXiv.org:cond-mat/0403690.
Deutsch, D., 1985, “Quantum theory, the Church-Turing principle and the universal quantum computer,” Proc. Roy. Soc. Lond. A 400, p. 97.
Farhi, E., J. Goldstone, S. Gutmanm, 2002, “Quantum Adiabatic Evolution Algorithms versus Simulated Annealing,” arXiv.org:quant-ph/0201031.
Feynmann, R.P., 1982, “Simulating Physics with Computers,” Int. Journ. Theor. Phys. 21, pp. 467-488.
Filippov, T.V., S.K. Tolpygo, J. Männik, J.E. Lukens, 2002, “Tunable Transformer for Qubits Based on Flux States,” IEEE ASC 2002 preprint, 5EL02.
Friedman, J.R., V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, 2000, “Quantum superposition of distinct macroscopic states,” Nature 406, pp. 43-46.
Fritzsch, L., H. Elsner, M. Schubert, H.-G. Meyer, 1999, “SNS and SIS Josephson junctions with dimensions down to the sub-μm region prepared by an unified technology,” Supercond. Sci. Tech. 12, pp. 880-882.
Il'ichev, E., N. Oukhanski, A. Izmalkov, T. Wagner, M. Grajcar, H.-G. Meyer, A.Y. Smirnov, A. Maassen van den Brink, M.H.S. Amin, A.M. Zagoskin, 2003, “Continuous Monitoring of Rabi Oscillations in a Josephson Flux Qubit,” Phys. Rev. Lett. 91, 097906.
Kaiser, R., C. Westbrook, F. David, 2001, “Coherent Atomic Matter Waves: Proceedings of the Les Houches Summer School, Course LXXII in 1999,” Springer-Verlag, New York, ISBN 286883499X, pp. 184-188, 294-295, 302-303.
Levitov, L.S., T.P. Orlando, J.B. Mayer, J.E. Mooij, 2001, “Quantum spin chains and Majorana states in arrays of coupled qubits,” arXiv.org:cond-mat/0108266.
Makhlin, Y., G. Schön, A. Shnirman, 2001, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, pp. 357-400.
Mooij, J.E., T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, S. Lloyd, 1999, “Josephson Persistent-Current Qubit,” Science 285, pp. 1036-1039.
Nielsen, M.A., I.L. Chuang, 2000, “Quantum Computation and Quantum Information”, Cambridge University Press, Cambridge, pp. 343-345.
Orlando, T.P., J.E. Mooij, L. Tian, C.H. van der Wal, L.S. Levitov, S. Lloyd, J.J. Mazo, 1999, “Superconducting persistent-current qubit,” Phys. Rev. B 60, 15398.
Plourde, B.L.T., J. Zhang, K.B. Whaley, F.K. Wilhelm, T.L. Robertson, T. Hime, S. Linzen, P.A. Reichardt, C.-E. Wu, J. Clarke, 2004, “Entangling flux qubits with a bipolar dynamic inductance,” Phys. Rev. B 70, 140501.
Shnirman, A., G. Schön, Z. Hermon, 1997, “Quantum Manipulations of Small Josephson Junctions,” Phys. Rev. Lett. 79, pp. 2371-2374.
Shoji, A., F. Shinoki, S. Kosaka, M. Aoyagi, H. Hayakawa, 1982, “New fabrication process for Josephson tunnel junctions with (niobium nitride, niobium) double-layered electrodes,” Appl. Phys. Lett. 41, pp. 1097-1099.
Shor, P.W., 2000, “Introduction to Quantum Algorithms,” arXiv.org:quant-ph/000503.
Berkley Andrew J.
Maassen van den Brink Alexander
Thom Murray
D-Wave Systems Inc.
Patton Paul E
Seed IP Law Group PLLC
Smith Zandra
LandOfFree
Coupling methods and architectures for information processing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Coupling methods and architectures for information processing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coupling methods and architectures for information processing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4100710