Correction of birefringence in cubic crystalline optical...

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S490020, C355S067000

Reexamination Certificate

active

07075696

ABSTRACT:
A lithographic apparatus includes a projection system, which includes a plurality of cubic crystalline optical elements that each impart retardance to a beam of radiation. The optical elements are aligned along an optical axis of the projection system and include two adjacent crystalline optical elements having a common crystalline lattice direction oriented along the optical axis. A first of the two adjacent elements is rotated about the optical axis with respect to a second of the adjacent elements with a predetermined rotation angle. The crystalline optical elements are selected and positioned along the optical axis and the rotation angle is selected such that, for each of two substantially perpendicular polarization states of the beam of radiation having a radiation wavelength of about 193 nm, the patterned beam of radiation has less than about 0.012 waves RMS of wavefront aberration across an exit pupil of the projection system.

REFERENCES:
patent: 3758201 (1973-09-01), MacNeille
patent: 4239329 (1980-12-01), Matsumoto
patent: 4534649 (1985-08-01), Downs
patent: 4576479 (1986-03-01), Downs
patent: 5033830 (1991-07-01), Jameson
patent: 5410375 (1995-04-01), Fiala
patent: 5537260 (1996-07-01), Williamson
patent: 5719698 (1998-02-01), Hiraiwa et al.
patent: 6081382 (2000-06-01), Omura
patent: 6084708 (2000-07-01), Schuster
patent: 6137626 (2000-10-01), Takaoka
patent: 6172380 (2001-01-01), Noguchi et al.
patent: 6195213 (2001-02-01), Omura et al.
patent: 6201634 (2001-03-01), Sakuma et al.
patent: 6252712 (2001-06-01), Furter et al.
patent: 6259508 (2001-07-01), Shigematsu
patent: 6324003 (2001-11-01), Martin
patent: 6366404 (2002-04-01), Hiraiwa et al.
patent: 6411384 (2002-06-01), Sakuma et al.
patent: 6417974 (2002-07-01), Schuster
patent: 6455862 (2002-09-01), van der Veen et al.
patent: 6583931 (2003-06-01), Hiraiwa et al.
patent: 6665126 (2003-12-01), Shafer et al.
patent: 6672109 (2004-01-01), Hiraiwa
patent: 6683710 (2004-01-01), Hoffman et al.
patent: 6683729 (2004-01-01), Schuster
patent: 6697199 (2004-02-01), Gerhard et al.
patent: 6728043 (2004-04-01), Gruner et al.
patent: 6775063 (2004-08-01), Shiraishi
patent: 6844972 (2005-01-01), McGuire, Jr.
patent: 2001/0026006 (2001-10-01), Noble et al.
patent: 2002/0085176 (2002-07-01), Hiraiwa et al.
patent: 2002/0149848 (2002-10-01), Labus
patent: 2002/0149855 (2002-10-01), Schuster
patent: 2002/0186355 (2002-12-01), Omura
patent: 2003/0000453 (2003-01-01), Unno et al.
patent: 2003/0007253 (2003-01-01), Schuster et al.
patent: 2003/0011893 (2003-01-01), Shiraishi et al.
patent: 2003/0012724 (2003-01-01), Burnett et al.
patent: 2003/0021026 (2003-01-01), Allan et al.
patent: 2003/0025894 (2003-02-01), Owa et al.
patent: 2003/0053036 (2003-03-01), Fujishima et al.
patent: 2003/0058421 (2003-03-01), Omura et al.
patent: 2003/0063393 (2003-04-01), Omura
patent: 2003/0067679 (2003-04-01), Allan et al.
patent: 2003/0086071 (2003-05-01), McGuire, Jr.
patent: 2003/0086156 (2003-05-01), McGuire, Jr.
patent: 2003/0086157 (2003-05-01), McGuire, Jr.
patent: 2003/0086171 (2003-05-01), McGuire
patent: 2003/0089299 (2003-05-01), Obara et al.
patent: 2003/0091934 (2003-05-01), Allan et al.
patent: 2003/0112501 (2003-06-01), Sakuma
patent: 2003/0128349 (2003-07-01), Unno
patent: 2003/0147061 (2003-08-01), Omura
patent: 2003/0168597 (2003-09-01), Webb et al.
patent: 2003/0197946 (2003-10-01), Omura
patent: 2004/0001244 (2004-01-01), Schuster
patent: 2004/0004757 (2004-01-01), Schuster
patent: 2004/0004771 (2004-01-01), Omura
patent: 2004/0005266 (2004-01-01), Sakuma et al.
patent: 2004/0036961 (2004-02-01), McGuire, Jr.
patent: 2004/0036971 (2004-02-01), McGuire, Jr.
patent: 2004/0036985 (2004-02-01), McGuire, Jr.
patent: 2004/0105170 (2004-06-01), Krahmer et al.
patent: 2004/0136084 (2004-07-01), Unno
patent: 101 23 725 (2002-11-01), None
patent: 101 23 727 (2002-11-01), None
patent: 101 27 320 (2002-12-01), None
patent: 101 25 487 (2003-01-01), None
patent: 102 10 782 (2003-10-01), None
patent: 0828172 (1998-03-01), None
patent: 1063684 (2000-12-01), None
patent: 1115019 (2001-07-01), None
patent: 1139138 (2001-10-01), None
patent: 2000-331927 (2000-11-01), None
patent: 2002-302628 (2002-10-01), None
patent: 2003-050349 (2003-02-01), None
patent: WO 01/01182 (2001-01-01), None
patent: WO 02/093209 (2002-11-01), None
patent: WO 02/093257 (2002-11-01), None
patent: WO 02/097508 (2002-12-01), None
patent: WO 02/099500 (2002-12-01), None
patent: WO 03/001271 (2003-01-01), None
patent: WO 03/003429 (2003-01-01), None
patent: WO 03/007046 (2003-01-01), None
patent: WO 03/009021 (2003-01-01), None
patent: WO 03/009050 (2003-01-01), None
patent: WO 03/009062 (2003-01-01), None
patent: WO 03046634 (2003-06-01), None
patent: WO 03/077007 (2003-09-01), None
patent: WO 03/077011 (2003-09-01), None
patent: WO 03/088330 (2003-10-01), None
patent: WO 04/008254 (2004-01-01), None
English translation of U.S. Appl. No. 60/308,844, filed Aug. 1, 2001 (filed in USPTO on Oct. 23, 2003).
Burnett et al., “Intrinsic Birefringence in 157 nm Materials,” Proc. 2nd, Intl. Symp on 157 nm Lithography, 2001, pp. 1-13, International SEMATECH, Austin, Texas.
Burnett et al., “Intrinsic Birefringence in 157 nm Materials,” Proceedings of the International Symposium on 157 nm Lithography, Dana Point, CA, May 15, 2001, XP002218849, pp. 1-13.
Burnett et al., “Intrinsic Birefringence in Calcium Fluoride,” preprinted handed out at 2ndInternational Symposium on 157 nm Lithography, Dana Point, CA, May 15, 2001, XP002232195, pp. 1-17.
Burnett et al., “Alternative Materials Development (LITJ216) Final Report—Stress Birefringence, Intrinsic Birefringence, and Index Properties of 157 nm Refractive Materials,” International SEMATECH, Feb. 28, 2002, 33 pages.
Krahmer, “Intrinsic Birefringence in CaF2,” at CaF2Birefringence Workshop, Intl SEMATECH, Jul. 18, 2001, pp. 1-9.
Morton et al., “Testing Optical Damage for 157 nm Lithography,” Semiconductor International, http://www.e-insite.net/semicoductor/index.asp?layout=article&stt (Feb. 2002).
Hand, “157 nm Optics Demand a Bag of Tricks,” Semiconductor International, http://www.e-insite.net/semiconducotr/index.asp?layout=article&stt (Feb. 2001).
Shiraishi et al. “Current Status of Nikon's Investigation on CaF2Intrinsic Birefringence,” International-SEMATECH Calcium Fluoride Birefringence Workshop, Jul. 18, 2001, pp. 1-15.
Burnett et al., “Intrinsic Birefringence in Calcium Fluoride,” National Institute of Standards and Technology, Gaithersburg, Maryland 20899, submitted for publication to Physical Review Letters (May 11, 2001), pp. 1-12.
Burnett et al., “Minimizing spatial-dispersion-induced birefringence in crystals for precision optics by using mixed crystals of materials with t opposite sign of the birefringence,” National Institute of Standards and Technology, Gaithersburg, MD 20899, http//physics.nist.gov/Divisions/Div842/Gp3/DUVMatChar/birefring.ht (Jul. 12, 2001), pp. 1-3.
Burnett et al., “Intrinsic birefringence in calcium fluoride and barium fluoride,” Physical Review B, vol. 64, May 14, 2001, pp. 241102-241102-4.
J. Dyson, “Unit magnification optical system without Seidel aberrations,” J. Opt. Soc. Am., vol. 49, 1959, p. 713 as described by R. Kingslake, “Lens Design Fundamentals,” Institute of Optics, University of Rochester, Academic Press, Inc. 1978, pp. 320-321.
Yeh et al. “Optics of Liquid Crystal Displays,” John Wiley & Sons, Inc., 1999, pp. 380-385.
Burnett et al., “Intrinsic Birefringence in 157 nm Materials,”National Institute of Standards and Technology, SEMATECH Calcium Fluoride Birefringence Workshop, Jul. 18, 2001, Slides.
Burnett et al., “Intrinsic Birefringence in 157 nm Materials,”National Institute of Standards and Technology, Slides.
Chiba et al., “New Generation Projection Optics for ArF Lithography,”Optical Microlithography XV, Proceedings of SPIE, vo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Correction of birefringence in cubic crystalline optical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Correction of birefringence in cubic crystalline optical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Correction of birefringence in cubic crystalline optical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3566484

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.