Cooler of optical fiber draw tower

Glass manufacturing – Fiber making apparatus – With means for cooling newly formed fiber – filament – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C065S511000, C065S512000, C065S481000, C065S381000, C062S003200, C062S003700, C062S003300, C165S104110

Reexamination Certificate

active

06279354

ABSTRACT:

CLAIM OF PRIORITY
This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. §119 from an application entitled Cooler of Optical Fiber Draw Tower earlier filed in the Korean Industrial Property Office on Jan. 13, 1998, and there duly assigned Serial No. 98-700 by that Office.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical fiber draw tower, and more particularly, to a cooler of an optical fiber draw tower.
2. Description of the Related Art
In general, optical fibers are obtained by drawing a preform for optical fibers using an optical fiber draw tower. A general optical fiber draw tower includes a melting furnace for melting a preform at a high temperature to draw out uncoated optical fiber, a diameter measuring unit installed below the melting furnace for continuously measuring the outer diameter of the uncoated optical fiber to uniformly control the outer diameter of the uncoated optical fiber, a cooling unit below the diameter measuring unit, for cooling down the temperature of the uncoated optical fiber to room temperature, a coating unit below the cooling unit, for coating the surface of the uncoated optical fiber with UV-curable resin such as acryl resin or silicon resin so as to protect the uncoated optical fiber from the elements of nature, a curing unit below the coating unit, for curing the coated optical fiber, a capstan below the curing unit, for drawing out an optical fiber from the preform in a lower direction, and a spool next to the capstan, for winding the drawn optical fiber.
A method for preparing (drawing) an optical fiber coated with the UV-curable resin will be described. The preform is slowly provided into the melting furnace according to the position control mechanism of a preform position controller (not shown). Here, the preform is heated in the melting furnace to several thousands of degrees centigrade, typically, to 2,100~2,200° C. As a result, the uncoated optical fiber is drawn from the preform. Here, the drawing force originates from the capstan and is applied to the uncoated optical fiber.
Then, the diameter measuring unit measures the outer diameter of the uncoated optical fiber drawn to determine whether the diameter is equal to a predetermined diameter, e.g., 125 pm, and sends the measured diameter values to a diameter controller (not shown). The diameter controller controls the rotating speed of the capstan such that the diameter of the uncoated optical fiber is maintained at 125 pm. Then, the capstan rotates to control the drawing force on the uncoated optical fiber in response to the control of the diameter controller, thereby drawing out the uncoated optical fiber in a downward direction.
Then, in order to protect the uncoated optical fiber cooled at high speed by the cooling unit, the coating unit coats the surface of the descending uncoated optical fiber with a UV-curable resin, e.g., acryl resin or silicon resin. Then, the optical fiber coated with the UV-curable resin is cured by the curing unit, and is then wound around the spool under the control of drawing force of the capstan.
Also, if the preform is large, the height of the optical fiber draw tower must be increased. This is because very rapid drawing is necessary as the preform becomes large. After the preform is melted passing through a melting furnace and then drawn out, the drawn optical fiber is subjected to coating. Here, prior to coating of the optical fiber, the temperature of the uncoated optical fiber it must be lowered to a predetermined temperature. In general, the temperature of the uncoated optical fiber drawn right from the melting furnace is 2,000° C. or more, However, in order to guarantee stable coating on the drawn optical fiber, the temperature of the uncoated optical fiber must be cooled to at least 40° C. or less (usually to room temperature). For this purpose, the temperature of the uncoated optical fiber is cooled rapidly using a cooler. However, coolers in use are not sufficient to cool the uncoated optical fiber to keep pace with the rapid drawing speed. In the cooler having a pipe shape, the drawn optical fiber is cooled by filling the pipe with helium (He).
Thus, it is necessary to increase the height of the optical fiber draw tower in order to quickly cool the uncoated optical fiber in response to the rapid drawing speed of the optical fiber, However, making the optical fiber draw tower high increases the manufacturing cost and it is not efficient. What is needed is an efficient cooler not requiring a high optical fiber draw tower.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide an improved cooling unit for an optical fiber draw tower.
It is a further object of the invention to provide a cooler for an optical fiber draw tower which provides more efficient cooling.
It is a yet further object of the invention to provide a cooler which allows for a more rapid draw speed of the optical fiber.
It is a still further object of the invention to provide a cooler which allows for a shorter draw tower.
To achieve the above objects, the present invention provides a cooler of an optical fiber draw tower, capable of rapidly cooling an optical fiber which is melted in a melting furnace and then drawn, without increasing the height of a conventional optical fiber draw tower, such that the optical fiber can be rapidly drawn out from a preform. According to an aspect of the object of the present invention, there is provided a cooler of an optical fiber draw tower, situated below a melting furnace for melting a preform for an optical fiber, for cooling the optical fiber drawn from the preform melted in the melting furnace, wherein the cooler includes at least one heat exchanger installed with a predetermined length surrounding the optical fiber drawn from the melting furnace, for cooling the drawn optical fiber.
Preferably, the heat exchanger is formed of a thermoelectric cooler (TEC) for taking electrical energy through one heat absorbing surface to emit heat to the other heat emitting surface and has a tubular shape in which the heat absorbing surface of the TEC surrounds the optical fiber drawn from the melting furnace along the drawing direction by a predetermined length, and the drawn optical fiber is cooled as it passes through the tubular TEC.
Preferably, the cooler further includes an auxiliary cooler attached to the heat emitting surface of the TEC, for cooling the emitted heat, and the auxiliary cooler is installed contacting the heat exchanger and includes a tank in which is a heat-exchange medium flow path is arranged, a supply pipe attached to the tank to supply a heat-exchange medium through the heat-exchange medium flowing path, and an return pipe for returning the heat exchange medium.
According to another aspect of the object, there is provided a cooler of an optical fiber draw tower, situated below a melting furnace for melting a preform for an optical fiber, for cooling the optical fiber drawn from the preform melted in the melting furnace, wherein the cooler has a shape having two openings through which the drawn optical fiber passes in the vertical direction, and includes two thermoelectric coolers (TECs) each having one heat absorbing surface for taking electrical energy and the other heat emitting surface for emitting heat, arranged such that two heat absorbing surfaces face each other, surrounding the drawn optical fiber, and two spacers interposed between the TECs to surround the drawn optical fiber.
Preferably, the cooler further includes an auxiliary cooler attached to each heat emitting surface of the facing TECs. Also, at least two coolers may be arranged in the optical fiber drawing direction. Preferably, each cooler further includes an auxiliary cooler attached to each heat emitting surface of the facing TECs, and an insulating material is interposed between the coolers.


REFERENCES:
patent: 5366527 (1994-11-01), Amos
patent: 5737923 (1998-04-01), Gilley

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooler of optical fiber draw tower does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooler of optical fiber draw tower, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooler of optical fiber draw tower will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2463006

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.