Control strategy for diesel engine auxiliary loads to reduce...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Railway vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S020000, C701S036000, C701S101000, C123S339180

Reexamination Certificate

active

06725134

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates generally to an apparatus and method for controlling auxiliary loads of a diesel engine, and more specifically to an apparatus and method for controlling the activation of auxiliary loads during the time immediately following a command to the diesel engine to provide additional output horsepower and prior to the time when the diesel engine has reached steady-state operation in response to that command.
Large self-propelled vehicles, such as locomotives, off-highway vehicles and transit cars commonly use a diesel engine to drive an electrical generating system, which in turn supplies electrical current to a plurality of direct-current (DC) or alternating current (AC) traction motors having rotors drivingly coupled, through speed-reducing gearing, to axle-wheel sets of the vehicle. The generating device typically comprises a main three-phase traction alternator, having a rotor mechanically coupled to the output shaft of the engine, which is conventionally a 16-cylinder turbo-charged diesel engine. When current excitation is applied to the field windings of the rotating rotor, alternating voltages are generated in the three-phase stator windings. These voltages are rectified and applied to the armature windings of the traction motors via a DC link. Typically, there is also an auxiliary alternator, which is also mechanically coupled to the output shaft of the engine, for producing alternating current to drive a plurality of auxiliary vehicle systems, such as a cooling radiator fan and a cooling traction motor fan.
During the motoring or propulsion operational mode, a locomotive diesel engine tends to deliver constant power from the traction alternator to the traction motors, as determined by the throttle setting and ambient conditions, but regardless of the locomotive speed. For maximally efficient performance, the electrical power output of the traction alternator must be suitably regulated so that the full engine power is efficiently utilized. For proper train handling, intermediate power output levels are provided to permit graduated power application to the traction motors, by controlling the excitation current supplied to the main alternator, through the operation of the operator-controlled handle or throttle, discussed further below. The traction alternator load on the engine must not exceed the power the engine is capable of developing. Engine overloads can cause premature wear, engine stalling or other undesirable effects. Historically, the locomotive control system has included the operator controlled handle, allowing the operator to select the traction power level, in discrete steps between zero and maximum, so that the traction and auxiliary alternators can supply the power demanded by the traction load and the auxiliary loads, respectively.
The engine horsepower is proportional to the product of the angular velocity of the crank shaft and the torque opposing crank shaft motion. To vary and regulate the engine power output, it is common practice to equip a locomotive engine with a speed regulating governor for adjusting the quantity of pressurized diesel fuel injected into each of the engine cylinders so that the actual crank shaft speed (in RPM) corresponds to the desired engine speed. The desired speed is set within permissible limits, by the lever or throttle handle that can be selectively moved through eight steps or notches between a low engine speed position (notch one) and a maximum engine speed (notch eight). The throttle handle is one element of the operator's control console located in the cab of the locomotive. In addition to the eight conventional power notches, the handle further includes an idle position and a continuously variable dynamic braking position, allowing application of the dynamic brakes from zero percent to 100 percent of full allowable dynamic braking. The notch call or throttle handle position defines the engine speed and the engine load, as requested by the locomotive operator. A change from one notch position to the next consecutive notch position changes the delivered horsepower; certain notch position changes also command a change in the engine speed. In response to the throttle position the main locomotive controller commands the traction alternator to supply the demanded load, typically measured in the product of the traction alternator output current and the output voltage. The locomotive controller also responds to the engine speed demand at the notch position by controlling the fuel mass injected into each engine cylinder.
For each of its eight different notch settings, the engine is capable of developing a corresponding constant horsepower, assuming maximum output torque. The throttle notch eight position commands a maximum engine speed (e.g. 1,050 RPM) and a maximum rated gross horse power (e.g. 4,500). The engine output power at each notch position is equal to the power demanded by the traction motors, as supplied by the engine-driven traction alternator, plus the power demanded by the electrically driven auxiliary equipment or loads. Each notch position commands a different engine load or horsepower, but a few of the notch positions command the same engine speed with different horsepower values.
The output power (measured in kVA) of the main or traction alternator is proportional to the product of the RMS magnitude of the generated voltage and load current. The voltage magnitude varies with the engine speed and is also a function of the excitation current supplied to the alternator field windings. To accurately control and regulate the power supplied to the electrical loads (i.e., the main traction motors and the auxiliary loads), it is common practice to adjust the field or excitation current supplied to the main alternator to compensate for load changes, i.e., changes in the traction motor loading and/or auxiliary equipment loading. This minimizes the error between the actual output power and the desired output power and reduces the engine load. The desired output power is established by the locomotive operator by placement of the throttle handle in one of the notch positions one through eight. The resulting control over the excitation current creates a balanced steady-state condition resulting in substantially constant and optimum electrical power output for each position of the throttle handle.
It is also desirable to control the engine fuel flow to maintain a constant engine RPM for the notch position horsepower. Sudden changes in demanded horsepower (either by way of the traction or the auxiliary alternator) can cause the engine to be temporarily over-fueled or under-fueled due to the compensation made by the controller to maintain engine speed. If the engine is over fueled, the resulting low air-to-fuel ratio causes incomplete combustion, resulting in excessive exhaust emissions from unburned hydrocarbons. If insufficient fuel is supplied, the engine may bog and stall.
Recent amendments to the United States environmental protection statutes and regulations mandate specific visible smoke/particulate and invisible emissions levels from locomotive diesel engines. One such requirement is the reduction of oxides of nitrogen (NO
x
) emissions, which can be lowered by retarding the injection fuel timing of the diesel engine. But this timing modification increases fuel consumption and operating costs and therefore it is desirable to increase the engine compression ratio to gain back some of the fuel consumption losses. However, increasing the compression ratio increases the visible smoke emissions when the engine is not fully loaded. The problem of visible smoke is especially acute during low load conditions and transient load and speed changes, i.e., when the locomotive operator advances the throttle to a higher notch position to call for higher speed and/or greater load pulling capacity (i.e., horsepower). NO
x
emissions are especially prevalent at high engine loads.
Given the substantial focus on the reduction of smoke and NO
x
emissions, many different techniques for l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Control strategy for diesel engine auxiliary loads to reduce... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Control strategy for diesel engine auxiliary loads to reduce..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control strategy for diesel engine auxiliary loads to reduce... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3272677

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.