Configurable nanoscale crossbar electronic circuits made by...

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S598000, C438S957000

Reexamination Certificate

active

06518156

ABSTRACT:

TECHNICAL FIELD
The present invention is generally directed to nanoscale computing and memory circuits, and, more particularly, to the electrochemical modification of nanowires and junctions between nanowires to optimize their properties for electronic circuit applications.
BACKGROUND ART
Above-referenced application Ser. No. 09/280,225 discloses and claims the fabrication of the nanoscale defect-tolerant and configurable devices by forming nanoscale crossbars first, and then configuring the electronic properties of the devices at each cross-point or intersection. It has also been proposed to use configurable molecules between the cross lines to control the electronic properties; see also above-referenced application Ser. No. 09/282,048.
The above-referenced patent applications are directed to the formation of a configurable film at the cross-points, such as a switchable molecule, an example of which is rotaxane. Investigations continue to develop new and different ways of configuring the crossbars, in an effort to provide improved performance.
DISCLOSURE OF INVENTION
In accordance with the present invention, configurable circuits comprise arrays of cross-points of one layer of metal or semiconductive nanoscale lines, or wires, crossed by a second layer of metal or semiconductive nanoscale lines, or wires, with a configurable layer between the lines. Methods are provided for altering the thickness and/or properties of the wires and the configurable layer by oxidation or reduction methods, employing a solid material as the configurable layer.
Specifically, a method is provided for configuring nanoscale devices in a crossbar array of a first layer of nanoscale lines comprising a first metal or a first semiconductor material crossed by a second layer of nanoscale lines comprising a second metal or a second semiconductor materials. The method comprises:
(a) forming the first layer of nanoscale lines on a substrate;
(b) forming a solid phase configurable layer on the first layer at least in areas where the nanoscale lines of the second layer are to cross the nanoscale lines of the first layer;
(c) forming the second layer of nanoscale lines on the configurable layer, crossing over the first layer of nanoscale lines; and
(d) changing a property of the lines and/or configurable layer by oxidation or reduction to thereby configure the nanoscale devices to form logic and/or memory circuits. Examples of properties that may be changed include thickness, electronic properties, such as conductivity (resistivity), barrier height, capacitance, band gap, etc.


REFERENCES:
patent: 3975623 (1976-08-01), Weinberger
patent: 4208728 (1980-06-01), Blahut et al.
patent: 5475341 (1995-12-01), Reed
patent: 5519629 (1996-05-01), Snider
patent: 5640343 (1997-06-01), Gallagher et al.
patent: 5646418 (1997-07-01), Frazier et al.
patent: 5665618 (1997-09-01), Meyer et al.
patent: 5729752 (1998-03-01), Snider et al.
patent: 5790771 (1998-08-01), Culbertson et al.
patent: 6438025 (2002-08-01), Skarupo
J.R. Heath et al, “A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology”, Science, vol. 280, pp. 1716-1721 (Jun. 12, 1998).
L. Guo et al, “Nanosclae Silicon Field Effect Transistors Fabricated Using Imprint Lithography”, Applied Physics Letters, vol. 71, pp. 1881-1883 (Sep. 29, 1997).
A.M. Morales et al, “A Laser Ablation Method For The Synthesis Of Crystalline Semicondutor Nanowires”, Science, vol. 279, pp. 208-268 (Jan. 9, 1998).
J.R. Heath et al, “A Liquid Solution Synthesis Of Single Crystal Germanium Quantum Wires”, Chemical Physics Letters, vol. 208, No. 3, 4, pp. 263-268 (Jun. 11, 1993).
V.P. Menon et al, “Fabrication and Evaluation Of Nanoelectrode Ensembles”, Analytical Chemistry, vol. 67, pp. 1920-1928 (Jul. 1, 1995).
L. Guo et al, “A Silicon Single-Electron Transistor Memory Operating At Room Temperature”, Science, vo. 275, pp. 649-651 (Jan. 31, 1997).
S.J. Tans et al, “Room-Temperature Transistor Based On A Single Carbon Nanotube”, Nature, vol. 393, pp. 49-52 (May 7, 1998).
K.K. Likharev, “Correlated Discrete Transfer Of Single Electrons In Ultrasmall Tunnel Junctions”, IBM Journal of Research and Development, vol. 32, No. 1, pp. 144-158 (Jan. 1998).
R.E. Jones Jr., et al, “Ferroelectric Non-Volatile Memories For Low-Voltage, Low-Power Applications”, Thin Solid Films, vol. 270, pp. 584-588 (Dec. 1, 1995).
D.B. Amabilino et al, “Aggregation Of Self-Assembling Branched [n]-Rotaxanes”, New Journal of Chemistry, vol. 22, No. 9, pp. 959-972 (Sep. 11, 1998).
T. Vossmeyer et al, “Combinatorial Approaches Toward Patterning Nanocrystals”, Journal of Applied Physics, vol. 84, No. 7, pp. 3664-3670 (Oct. 1, 1998).
D.V. Leff et al, “Thermodynamic Control Of Gold Nanocrystal Size: Experiment And Theory”, The Journal of Physical Chemistry, vol. 99, pp. 7036-7041 (May 4, 1995).
J.D.L. Holloway et al, “Electron-Transfer Reactions Of Metallocenes: Influence Of Metal Oxidation State On Structure And Reactivity”, Journal of the American Chemical Society, vol. 101, pp. 2038-2044 (Apr. 11, 1979).
C. Mead et al, “Introduction to VLSI Systems”, Addison-Wesley, Ch. 3, Section 10, pp. 79-82 (1980).
C.P. Collier et al, “Electronically Configurable Molecular-Based Logic Gates”, Science, vol. 285, pp. 391-394 (Jul. 16, 1999).
K. Matsumoto et al, “Room Temperature Operation Of A Single Electron Transistor Made By The Scanning Tunneling Microscope Nanooxidation Process For The TiOx/Ti System”, Applied Physics Letters, vol. 68, No. 1, pp. 34-36 (Jan. 1, 1996).
E.S. Snow et al, “Single-Atom Point Contact Devices Fabricated With An Atomic Force Microscope”, Applied Physics Letters, vol. 69, No. 2, pp. 269-271 (Jul. 8, 1996).
R. Garcia et al, “Local Oxidation Of Silicon Surfaces By Dynamic Force Microscopy: Nanofabrication And Water Bridge Formation”, Applied Physics Letters, vol. 72, No. 18, pp. 2295-2297 (May 4, 1998).
S. Gwo et al, “Local Electric-Field-Induced Oxidation Of Titanium Nitride Films”, Applied Physics Letters, vol. 74, No. 8, pp. 1090-1092 (Feb. 22, 1999).
R. Armitage et al, “Solid-State Gadolinium-Magnesium Hydride Optical Switch”, Applied Physics Letters, vol. 75, No. 11, pp. 1863-1865 (Sep. 27, 1999).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Configurable nanoscale crossbar electronic circuits made by... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Configurable nanoscale crossbar electronic circuits made by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Configurable nanoscale crossbar electronic circuits made by... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3140293

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.