Boots – shoes – and leggings
Reexamination Certificate
1997-01-22
2001-08-14
Horlick, Kenneth R. (Department: 1656)
Boots, shoes, and leggings
36, 36, 36, C702S019000, C702S022000, C702S027000, C378S073000
Reexamination Certificate
active
06273598
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to methods and compositions for designing, identifying, and producing compounds useful as tissue morphogenic protein analogs. More specifically, the invention relates to structure-based methods and compositions useful in designing, identifying, and producing molecules which act as functional mimetics of the tissue morphogenic protein osteogenic protein-1 (OP-1).
BACKGROUND OF THE INVENTION
Cell differentiation is the central characteristic of tissue morphogenesis which initiates during embryogenesis, and continues to various degrees throughout the life of an organism in adult tissue repair and regeneration mechanisms. The degree of morphogenesis in adult tissue varies among different tissues and is related, among other things, to the degree of cell turnover in a given tissue.
The cellular and molecular events which govern the stimulus for differentiation of cells is an area of intensive research. In the medical and veterinary fields, it is anticipated that discovery of the factor or factors which control cell differentiation and tissue morphogenesis will advance significantly the ability to repair and regenerate diseased or damaged mammalian tissues and organs. Particularly useful areas for human and veterinary therapeutics include reconstructive surgery, the treatment of tissue degenerative diseases including, for example, arthritis, emphysema, osteoporosis, cardiomyopathy, cirrhosis, degenerative nerve diseases, inflammatory diseases, and cancer, and in the regeneration of tissues, organs and limbs. In this and related applications, the terms “morphogenetic” and “morphogenic” are used interchangeably.
A number of different factors have been isolated in recent years which appear to play a role in cell differentiation. Recently, a distinct subfamily of the “superfamily” of structurally related proteins referred to in the art as the “transforming growth factor- &bgr; (TGF-&bgr;) superfamily of proteins” have been identified as true tissue morphogens.
The members of this distinct “subfamily” of true tissue morphogenic proteins share substantial amino acid sequence homology within their morphogenetically active C-terminal domains (at least 50% identity in the C-terminal 102 amino acid sequence), including a conserved six or seven cysteine skeleton, and share the in vivo activity of inducing tissue-specific morphogenesis in a variety of organs and tissues. The proteins apparently contact and interact with progenitor cells e.g., by binding suitable cell surface molecules, predisposing or otherwise stimulating the cells to proliferate and differentiate in a morphogenetically permissive environment. These morphogenic proteins are capable of inducing the developmental cascade of cellular and molecular events that culminate in the formation of new organ-specific tissue, including any vascularization, connective tissue formation, and nerve innervation as required by the naturally occurring tissue. The proteins have been shown to induce morphogenesis of both bone cartilage and bone, as well as periodontal tissues, dentin, liver, and neural tissue, including retinal tissue.
True tissue morphogenic proteins identified to date include proteins originally identified as bone inductive proteins. These include OP-1, (osteogenic protein-i, also referred to in related applications as “OP1”), its Drosophila homolog, 60A, with which it shares 69% identity in the C-terminal “seven cysteine” domain, and the related proteins OP-2 (also referred to in related applications as “OP2”) and OP-3, both of which share approximately 65-75% identity with OP-1 in the C-terminal seven cysteine domain, as well as BMP5, BMP6 and its murine homolog, Vgr-1, all of which share greater than 85% identity with OP-1 in the C-terminal seven cysteine domain, and the BMP6 Xenopus homolog, Vgl, which shares approximately 57% identity with OP-1 in the C-terminal seven cysteine domain. Other bone inductive proteins include the CBMP2 proteins (also referred to in the art as BMP2 and BMP4) and their Drosophila homolog, DPP. Another tissue morphogenic protein is GDF-1 (from mouse). See, for example, PCT documents US92/01968 and US92/07358, the disclosures of which are incorporated herein by reference. Members of the BMP/OP subfamily and the amino acid sequence identities (expressed as percentages) between selected members of the TGF-&bgr; superfamily are shown in FIG.
6
.
As stated above, these true tissue morphogenic proteins are recognized in the art as a distinct subfamily of proteins different from other members of the TGF-&bgr; superfamily in that they share a high degree of sequence identity in the C-terminal domain and in that the true tissue morphogenic proteins are able to induce, on their own, the full cascade of events that result in formation of functional tissue rather than merely inducing formation of fibrotic (scar) tissue. Specifically, members of the family of morphogenic proteins are capable of all of the following in a morphogenetically permissive environment: stimulating cell proliferation and cell differentiation, and supporting the growth and maintenance of differentiated cells. The morphogenic proteins apparently also may act as endocrine, paracrine or autocrine factors.
The morphogenic proteins are capable of significant species “crosstalk.” That is, xenogenic (foreign species) homologs of these proteins can substitute for one another in functional activity. For example, dpp and 60A, two Drosophila proteins, can substitute for their mammalian homologs, BMP2/4 and OP-1, respectively, and induce endochondral bone formation at a non-bony site in a standard rat bone formation assay. Similarly, BMP2 has been shown to rescue a dpp
−
mutation in Drosophila. In their native form, however, the proteins appear to be tissue-specific, each protein typically being expressed in or provided to one or only a few tissues or, alternatively, expressed only at particular times during development. For example, GDF-1 appears to be expressed primarily in neural tissue, while OP-2 appears to be expressed at relatively high levels in early (e.g., 8-day) mouse embryos. The endogenous morphogens may be synthesized by the cells on which they act, by neighboring cells, or by cells of a distant tissue, the secreted protein being transported to the cells to be acted on.
A particularly potent tissue morphogenic protein is OP-1. This protein, and its xenogenic homologs, are expressed in a number of tissues, primarily in tissues of urogenital origin, as well as in bone, mammary and salivary gland tissue, reproductive tissues, and gastrointestinal tract tissue. It is expressed also in different tissues during embryogenesis, its presence coincident with the onset of morphogenesis of that tissue.
The morphogenic protein signal transduction across a cell membrane appears to occur as a result of specific binding interaction with one or more cell surface receptors. Recent studies on cell surface receptor binding of various members of the TGF-&bgr; protein superfamily suggests that the ligands mediate their activity by interaction with two different receptors, referred to as Type I and Type II receptors to form a hetero-complex. A cell surface bound beta-glycan also may enhance the binding interaction. The Type I and Type II receptors are both serine/threonine kinases, and share similar structures: an intracellular domain that consists essentially of the kinase, a short, extended hydrophobic sequence sufficient to span the membrane one time, and an extracellular domain characterized by a high concentration of conserved cysteines.
Morphogenic proteins are disulfide-linked dimers which are expressed as large precursor polypeptide chains containing a hydrophobic signal sequence, a long and relatively poorly conserved N-terminal pro region of several hundred amino acids, a cleavage site and a mature domain comprising an N-terminal region which varies among the family members and a more highly conserved C-terminal region. The C-terminal region, which is present in the processed mat
Carlson William D.
Griffith Diana L.
Keck Peter C.
Rueger David C.
Sampath Kuber T.
Creative BioMolecules, Inc.
Elrifi Ivor R.
Horlick Kenneth R.
Mintz Levin Cohn Ferris Glovsky & Popeo PC
Morency Michel
LandOfFree
Computer system and methods for producing morphogen analogs... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Computer system and methods for producing morphogen analogs..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer system and methods for producing morphogen analogs... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2435590