Electrical computers and digital processing systems: support – Computer power control – By external command
Reexamination Certificate
1999-07-01
2002-09-17
Auve, Glenn A. (Department: 2181)
Electrical computers and digital processing systems: support
Computer power control
By external command
C713S324000
Reexamination Certificate
active
06453423
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to the field of computers, and more specifically to the power management of computers. Power management, and essentially power saving is becoming an important concern for computer manufacturers, inter alia for environmental reasons. It is also a concern for battery-operated computers such as laptop computers.
Another concern for computers is the remote management of computers through local area networks or wide area networks. This concern is becoming important as the existing number of networked computers increases.
BACKGROUND OF THE INVENTION
FIG. 1
is a representation of the state machine of a computer of the type currently sold by the applicant under the reference HP Vectra VL8. As shown on this figure, the computer may be in five different states. In the first one 1, the computer is off and unplugged, and the power consumption is nil; in a second state 2, the computer is OFF; in this state, the power supply unit is connected to the power supply, and the computer is off. However, the LAN card of the computer is in a sleep mode, that is the LAN is not available, however, the LAN is always powered and the LAN processor in the LAN network card scans networks frames. In this state, pursuant to the German Ecolabel, the power consumption of the computer should be less than 5 W. The third state 3 is the ON state, with the computer working; power consumption is then not subject to any particular constraints. The fourth state 4 is the sleep mode, where the functionalities of the computer are degraded; in this state, the power supply unit is on, and the computer as well as its LAN card are in a sleep mode. In this fourth state, pursuant to the recommendations of the US Energy protection Agency, the power consumption should be less than 30 W. The fifth state 5 is a state where the computer is plugged in, but switched off; this state is entered when there is a power failure while the computer is connected to the wall.
The computer passes from the second state to the third state, as symbolized by arrow
6
when the ON/OFF button of the computer is activated to switch the computer on. As symbolized by arrow
7
, the computer passes from the fourth state—sleep mode—to the third state—ON—when the computer is woken up. This may for instance be the case when the user presses a key on the keyboard of the computer.
For computers connected to a network, it has been suggested to allow both operations to be conducted from the LAN. The corresponding functions—Remote Power-On or RPO and Remote wake-up or RWU, respectively—are implemented on the computers sold by the applicant with the Hewlett-Packard NightDirector features. Remote power on is the ability to power on a PC remotely, from the OFF state; remote wake up is the ability to wake up a PC from energy saving sleep mode. These functions enable remote management applications to be carried out on remote computers. They basically involve sending a wake up or power on frame on the network; this frame is received and interpreted by the LAN card of the computer. A proprietary connector is used to connect the LAN card to the motherboard, so that RPO or RWU signals may be transmitted from the LAN card processor to the motherboard. For instance Hewlett-Packard provides on some of its personal computers a NightDirector (a trademark of Hewlett Packard Company) connector that comprises
5
RPO/RWU related pins, that is ground and power (Vccaux) pins, together with a power on pin, a wake-up pin and a RPO enable pin.
Advanced Power Management (APM) is a specification co-developed by-Intel Corporation and Microsoft Corporation, that consists of one or more layers of software that support power management in computers with power manageable hardware. APM defines the hardware independent software interface between hardware-specific power management software and an operating system power management policy driver. It masks the details of the hardware, allowing higher-level software to use APM without any knowledge of the hardware interface. The APM software interface specification defines a layered cooperative environment in which applications, operating systems, device drivers and the APM BIOS work together to reduce power consumption.
APM partitions power management functionality into a hierarchy of cooperating layers and standardizes the flow of information and control across the layers. The software components in an APM system comprise:
The APM BIOS is the software interface to the motherboard and its power managed devices and components.
The APM Interface is the interaction between the APM Driver and the APM BIOS.
The APM Driver module connects to the APM BIOS and controls power management policy. The APM Driver communicates with APM-aware Applications.
APM-aware Applications interface with the APM Driver to monitor and/or control power management.
The APM-aware Device Driver modules provide power management software interface for add-in devices. See Advanced Power Management (APM) BIOS Interface Specification, Revision 1.2 February 1996 for a full description of APM software.
OnNow is a design initiative proposed by Microsoft Corporation, as a comprehensive system-wide approach to system and device power control. OnNow relies on the ACPI interface to improve the integration of PC hardware and software, for simpler operation and greater reliability; OnNow ensures that the operating system assumes full responsibility for power management, in response to usage input from the user, applications and device drivers. OnNow is based on a standard set of detailed system power states defined by system designers and implemented by the operating system. The system states are defined in the following table:
TABLE I
OnNow system states
Power
State
Description
Working
On. System is fully usable; power conservation
is occurring on a per-device basis.
Sleeping
Appears off. Power consumption is reduced. The
system returns to the Working state in an
amount of time inversely proportional to the
power consumption.
Soft Off
Appears off. Very low power consumption. The
system returns to the Working state after a
full reboot.
ACPI—standing for Advanced Configuration and Power Interface—is an open industry specification co-developed by Intel, Microsoft and Toshiba. ACPI defines a flexible and extensible interface that allows system designers to select appropriate cost/feature trade-offs for power management. The specification enables new power management technology to evolve independently in operating systems and hardware, while ensuring that they continue to work together. See Advanced Configuration and Power Management specification, Rev. 1.0 for a complete description of the structures and mechanisms necessary to design operating system directed power management and make advanced configuration architectures. Key ACPI functions, as listed in Table II, are usually implemented in a single chip called the ACPI controller; other ACPI functions may also be implemented in the ACPI controller, or may be distributed in other hardware in the computer. This table does not provide the ACPI interface components for each function, nor does it comprise the necessary resources for implementing the functions.
TABLE II
ACPI controller functions.
ACPI
function
Description
PM Timer
24/32 bits ACPI timer
Power
Logic to signal to OS power button presses
Button
Power
Hardware user sequence to turn system off (4
Button
seconds press)
override
Sleep/Wake-
Logic to control Sleep/Wake-up transitions
up
control
logic
SCI
Generates a SMI or an interrupt
generator
General
General purpose events controlled by OS
purpose
events
Power
Turn power supply on or off, put in low
supply
power mode
FIG. 2
is a schematic diagram of an ACPI controller, used as a power management control system.
FIG. 2
also shows the ON/OFF controller
58
, that controls the computer power supplies
59
. The controller of
FIG. 2
comprises a series of event registers
50
for general-purpose events. Each event register is comprised of one status bit
51
and one enable bit
52
, that may
Auve Glenn A.
Hewlett--Packard Company
LandOfFree
Computer remote power on does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Computer remote power on, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer remote power on will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2851733