Compound lens arrangement for use in lens arrays

Optical: systems and elements – Compound lens system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S466000, C359S619000, C359S455000, C353S007000

Reexamination Certificate

active

06744557

ABSTRACT:

The present invention relates to a compound lens for use in arrays of lenses and in particular to a compound lens for use in arrays of lenses or for use in projectors arranged in an array in multi-perspective autostereo projection systems.
In known multi-perspective autostereo projection systems the images from a plurality of projectors which show different perspective views of an object are projected onto a direction selective projection screen, such as a field lens. Such screens have the characteristic of re-forming the array of images of the projector lens exit pupils in a “viewer space” so that each viewer of the screen sees a stereo image pair and accordingly sees a three dimensional image. Thus, if a viewer horizontally crosses between adjacent images, the three dimensional image changes discontinuously or “flips”. A problem with this type of display is that the images seen by the viewer are separated by dark regions associated with gaps between the projection lenses.
In a paper entitled “Autostereoscopic 3D-imaging by front and rear projection and on flat panel displays” by R Borner which was published in “Displays”, Volume 14, Number 1, 1993 by Butterworth-Heinemann Ltd, this problem is tackled by overlapping the exit pupils of the projector lenses by using at least two vertically spaced layers of projectors lenses horizontally off-set with respect to each other. In this way the axis of an exit pupil of a projector lens in a first layer will lie in a horizontal plane located between the axes of the exit pupils of two adjacent projector lenses in a second layer. The images of the projector lens exit pupils from different layers can be overlapped in the “viewer space” using lenticular screens in order to eradicate dark regions between the images in the “viewer space”. A similar approach is used in a paper entitled “An autostereoscopic real-time 3D display system” by G. Bader, E. Luederand J. Fuhmann published in Euro Display '96. The resulting display apparatus using such multi-layer arrangements can be overly complex and the use of lenticular arrays to spread out the exit pupil image can affect the projected picture quality.
In a paper entitled “Multiperspective autostereoscopic display” by Gordon R. Little, Steven C. Gustafson and Vasiliki E. Nikolaou published in SPIE Volume 2219 Cockpit Displays (1994), the problem of gaps between adjacent images in the “viewer space” is solved by using a pupil forming screen which comprises a Fresnel lens and a lenticular array to spread out each image in the “viewer space” to remove any gaps between adjacent images. This again has the disadvantage of affecting the projected picture quality by reducing the resolution of the display.
In WO98/43441 an autostereo projection system is provided which uses multiple projectors to form an essentially seamless and extended field of view. Each projector is registered to a CRT display and shutter elements in each projector create multiple pupils for each CRT display. Each CRT display is driven with different images for each shutter pupil. Seamlessness is promoted by the use of a tunable optical diffuser as part of a common lenticular viewing lens. In WO98/43441 the adjacent compound lenses of the projectors abut, however, the exit pupils of the compound lenses do not abut, which results in dark spaces between adjacent images in the viewer space which are reduced by the use of the diffuser.
The present invention aims to overcome at least some of the problems discussed above by providing a compound lens for use in arrays of lenses which substantially eliminates the problem of dark spaces between images in the “viewer space” without requiring over-complex display arrangements and without reducing the resolution of the image seen by the viewer.
According to a first aspect of the present invention there is provided a compound lens for use in an array of such lenses comprising at least two lens elements including a front lens element having a front lens surface which is the largest diameter lens surface in the compound lens, wherein the exit pupil of the compound lens is bounded by and lies in the plane of the edge of said front lens surface. In such a compound lens the exit pupil lies at the front of the compound lens at the largest diameter lens surface of the compound lens which means that in an array of such compound lenses, adjacent abutting lenses will have adjacent abutting exit pupils. Thus, there will be no gaps between the exit pupils of adjacent compound lenses and so the present invention can be used to eliminate the problem of dark spaces between images in the “viewer space” in autostereo projection systems. The compound lens according to the present invention is of use in any application requiring the use of arrays of lenses with abutting exit pupils.
The aperture stop may be located within the front lens element of the compound lens. Preferably, the aperture stop of the lens lies in front of the lens element(s) of the compound lens other than the front lens element as this improves the symmetry of the lens arrangement about the aperture stop and helps to reduce coma, distortion and transverse colour in the compound lens. The aperture stop of the compound lens may lie in a plane which intersects the optical axis of the compound lens at the rear lens surface of the front lens element.
The front lens element may itself be a compound lens or alternatively could comprise a single lens. It is preferred that the rear lens surface of the front lens element is concave and further that the front lens surface of the front lens element is convex.
In a preferred arrangement the front lens element is the largest diameter lens element in the compound lens.
The first aspect of the present invention relates to a compound lens with its exit pupil located at its last (or front) surface with the edge of the exit pupil being the intersecting ring of the plane where the exit pupil is located and said last surface. The diameter of the exit pupil defines the largest diameter of the compound lens and the radius of the exit pupil is larger than or equal to all the ray heights traced through the compound lens without vignetting. Thus, several such compound lenses can be arranged in an array so that their exit pupils abut so that there will be no dark zone when this compound lens array is used as the projection lens array in a multi-projector autostereoscopic display.
According to a second aspect of the present invention there is provided a projector for use in an array of such projectors comprising a compound lens according to the first aspect of the present invention. As discussed above such a projector can be used in an abutting array of such projectors in an autostereo projection system in order to eliminate gaps between images in the “viewing space” of the system.
According to a third aspect of the present invention there is provided an autostereo projection system comprising an array of projectors according to the second aspect of the present invention.
According to a fourth aspect of the present invention there is provided a method of designing a compound lens for use in an array of such lenses comprising the steps of;
defining the material of a front lens element of the compound lens, the diameter of a front lens surface of the front lens element, the radius of curvature of the front lens surface and a rear lens surface of the front lens element and defining the location of an exit pupil of the compound lens arrangement to be bounded by and in the plane of the edge of said front lens surface,
based on the above defined parameters, tracing the location and magnitude of an aperture stop of the compound lens by tracing the marginal rays through the front lens element using ray tracing means,
repeating the above steps until the marginal ray heights through the front lens element are highest at the exit pupil, and then fixing the above defined parameters,
defining the diameters of the remaining lens surfaces of the compound lens to be less than that of the front lens surface of the front lens element an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compound lens arrangement for use in lens arrays does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compound lens arrangement for use in lens arrays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compound lens arrangement for use in lens arrays will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3301225

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.