Compound gas injection system and methods

Single-crystal – oriented-crystal – and epitaxy growth processes; – Forming from vapor or gaseous state – With decomposition of a precursor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06179913

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of vapor-phase deposition. This invention further relates to a gas delivery system for epitaxial growth on a substrate. The invention also relates to a reaction assembly for generation of a compound gas stream useful in hydride vapor-phase epitaxy. This invention still further relates to methods of delivering a reagent gas to a substrate for vapor-phase deposition.
2. Background of the Related Art
Hydride vapor-phase epitaxy (HVPE) remains an important technique for the epitaxial growth of various semiconductors, such as gallium nitride (GaN). In such a system, growth proceeds due to the high-temperature, vapor-phase reaction between the gallium chloride (GaCl) and ammonia (NH
3
). The ammonia is supplied from a standard gas source, while the GaCl is produced by passing hydrogen chloride (HCl) gas over a heated liquid gallium (Ga) supply heated from 750 to 850° C. The GaCl thus produced must be delivered to a substrate, typically through an assembly of tubes.
One major difficulty associated with prior art GaCl generation and transportation, e.g., in a HVPE system, is the unwanted deposition of solid GaCl on various components of the system. GaCl has a high vaporization temperature of more than 500° C., and will thus tend to deposit on any surface that is below this temperature. Such random deposition reduces the quantity of useful GaCl that is delivered to the substrate for reaction with ammonia, and thus reduces the amount of GaN available for epitaxial growth. In addition, deposits of GaCl tend to build up in the gas delivery system, eventually blocking efficient flow of reagents. Unwanted deposition is a particular problem in HVPE systems, where the epitaxial growth rates on the substrate are large, since large amounts of reagents must be transported within the system. As a result, frequent cleaning of the system is necessary to remove unwanted deposits. Cleaning and maintenance of HVPE systems and equipment components is a difficult, costly, time-consuming, and hazardous task. Moreover, where it is desired to deposit a thick layer of GaN on a substrate, unwanted deposition can reach problematic levels during the course of a single growth cycle, whereas cleaning and maintenance of the HVPE system can only be performed after a growth cycle is complete.
Prior art methods for avoiding deposition of GaCl in a HVPE system have involved heating all system components, e.g., tubes, lines, nozzles, to high temperatures. This complicates the design of the system, leading to operational problems and increased costs. In particular, the use of high temperatures to prevent GaCl deposition restricts the design and operation of the system, in that typically the GaCl must be produced in a chamber located very close to the substrate on which deposition is to take place.
Another drawback associated with prior art HVPE systems and methods is that the source or reagent gases often react prematurely, i.e., before reaching the substrate. For example, GaCl and ammonia tend to combine to form GaN on surfaces other than the substrate. Such premature deposition not only decreases the growth rate of the epitaxial layer, but also leads to unwanted deposition of GaN, e.g., on the walls of the reactor or growth chamber. Deposition of unwanted GaN can lead to clogging of the system, and also limits the distance between the GaCl production chamber and the substrate. Prior art attempts at avoiding premature, or non-target, deposition have focused on maintaining the Ga well below the reaction temperature of 1000-1100° C. However, this is difficult, especially since it must be done together with heating above the GaCl evaporation temperature.
The present invention overcomes problems associated with premature or non-target deposition of both reagent (e.g., GaCl) and reaction product (e.g., GaN) in prior art vapor-phase chemical deposition systems and methods.
SUMMARY OF THE INVENTION
In view of the above, it is an object of the present invention to provide a method of generating a gas stream for vapor-phase deposition.
One feature of the invention is that it provides a method for generating a compound gas stream for projection towards a substrate in an epitaxy system.
Another feature of the invention is that it provides a reaction assembly having a gullet outlet and a sheath outlet.
Another feature of the invention is that it provides a stream of sheath gas which prevents premature deposition of reagent gas in a vapor-phase deposition system.
Another feature of the invention is that it provides a stream of sheath gas which prevents premature reaction of reagent gases during vapor-phase deposition.
Another feature of the invention is that it provides a method for promoting efficient use of reagent gases for epitaxial growth in a HVPE system.
One advantage of the invention is that it provides a HVPE system which prevents non-target deposition during hydride vapor-phase epitaxy.
Another advantage of the invention is that it provides a reaction assembly having a gullet outlet at least partially encircled by a sheath outlet.
Another advantage of the invention is that it provides a reaction assembly for generating a compound gas stream.
Another advantage of the invention is that it provides a compound gas stream having a sheath gas enveloping a reagent gas.
Another advantage of the invention is that it provides a method for generating a compound gas stream having an enveloping sheath gas and an envelope reagent gas.
Another advantage of the invention is that it provides a method for introducing a compound sheath gas of an inert carrier gas and a corrosive etching gas such as HCl. The corrosive etching gas affects growth rates for nitride films that are deposited and can lead to highly uniform films with a high degree of crystalline character. A second advantage to introducing a corrosive etching gas in combination with of an inert carrier gas is that the etching gas prevent build-up of nitride deposition at or near the ejecting portion of the reaction assembly and thus reduces the maintenance associated with cleaning the deposition equipment.
These and other objects, advantages and features are accomplished by the provision of a method of vapor-phase deposition on a substrate within a growth chamber, the method including: a) providing a deposition system including a growth chamber; b) arranging the substrate within the growth chamber; and c) introducing a stream of reagent gas into the growth chamber, wherein the stream of reagent gas is at least partially enveloped within a stream of sheath gas.
These and other objects, advantages and features are accomplished by the provision of a method of generating a compound gas stream, including the steps of: a) providing a reaction assembly, the reaction assembly including a sheath, a reaction chamber located within the sheath, a sheath inlet leading to the sheath, a gullet inlet leading to the reaction chamber, a sheath outlet leading from the sheath, and a gullet outlet leading from the reaction chamber; b) projecting a reagent gas from the gullet outlet; and c) concurrently with step b), projecting a sheath gas from the sheath outlet.
These and other objects, advantages and features are accomplished by the provision of a system for vapor-phase deposition of a material on a substrate, wherein the system includes: a growth chamber including a growth chamber inlet, the growth chamber adapted for housing the substrate; and a reaction assembly including a sheath, a reaction chamber located within the sheath, a sheath inlet leading to the sheath, a gullet inlet leading to the reaction chamber, a sheath outlet leading from the sheath, and a gullet outlet leading from the reaction chamber.
These and other objects, advantages and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The advantages

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compound gas injection system and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compound gas injection system and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compound gas injection system and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2495844

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.