COMPATIBILIZED BLENDS OF ALKENYL AROMATIC POLYMERS,...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S213000, C525S216000, C525S232000, C525S238000, C525S240000, C525S241000

Reexamination Certificate

active

06476141

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
FIELD OF THE INVENTION
This invention relates to thermoplastic blends comprising one or more alkenyl aromatic polymers (Component A), one or more substantially random interpolymers (Component B) and one or more compatibilizers (Component C). Examples of such blends include blends of ethylene styrene interpolymers (ESI) and/or ethylene propylene styrene (EPS) interpolymers with polystyrene (PS) and/or high impact polystyrene (HIPS) compatibilzed with SBS (styrene-butadiene-styrene) or SIS (styrene-isoprene-styrene) or SEBS (styrene-ethylene-butylene-styrene) or SEPS (styrene-ethylene-propylene-styrene) block copolymers.
This technology enables the production of novel materials with a balance of flexibility, degree of hardness, modulus, short cycle times (injection molding), tensile strength, pull force strength and paintability.
BRIEF SUMMARY OF THE INVENTION
A blend composition (and fabricated articles therefrom) comprising;
(A) one or more alkenyl aromatic polymers;
(B) one or more substantially random interpolymers comprising
(1) polymer units derived from;
(a) at least one vinyl or vinylidene aromatic monomer, or
(b) at least one hindered aliphatic or cycloaliphatic vinyl or vinylidene monomer, or
(c) a combination of at least one aromatic vinyl or vinylidene monomer and at least one hindered aliphatic or cycloaliphatic vinyl or vinylidene monomer, and
(2) polymer units derived from at least one of ethylene and/or a C
3-20
&agr;-olefin; and
(3) polymer units derived from one or more of ethylenically unsaturated polymerizable monomers other than those derived from (1) and (2); and,
(C) one or more compatibilizers;
and wherein said blend has;
a) a tensile strength greater than 1500 psi;
b) a pull force test (⅛″ diameter) greater than 15 lb;
c) a Shore A Hardness greater than 79;
d) a cycle times in injection molding less than 30 sec.
DETAILED DESCRIPTION OF THE INVENTION
Definitions
All references herein to elements or metals belonging to a certain Group refer to the Periodic Table of the Elements published and copyrighted by CRC Press, Inc., 1989. Also any reference to the Group or Groups shall be to the Group or Groups as reflected in this Periodic Table of the Elements using the IUPAC system for numbering groups.
Any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value. As an example, if it is stated that the amount of a component or a value of a process variable such as, for example, temperature, pressure, time and the like is, for example, from 1 to 90, preferably from 20 to 80, more preferably from 30 to 70, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 etc. are expressly enumerated in this specification. For values which are less than one, one unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner.
The term “hydrocarbyl” as employed herein means any aliphatic, cycloaliphatic, aromatic, aryl substituted aliphatic, aryl substituted cycloaliphatic, aliphatic substituted aromatic, or aliphatic substituted cycloaliphatic groups.
The term “hydrocarbyloxy” means a hydrocarbyl group having an oxygen linkage between it and the carbon atom to which it is attached.
The term “interpolymer” is used herein to indicate a polymer wherein at least two different monomers are polymerized to make the interpolymer. This includes copolymers, terpolymers, etc.
The term “block copolymer” is used herein to mean elastomers having at least one block segment of a hard polymer unit and at least one block segment of a rubber monomer unit. However, the term is not intended to include thermoelastic ethylene interpolymers which are, in general, random polymers. Preferred block copolymers contain hard segments of styrenic-type polymers in combination with saturated or unsaturated rubber monomer segments. The structure of the block copolymers useful in the present invention is not critical and can be of the linear or radial type, either diblock or triblock, or any combination of thereof.
Component A
For purposes of this invention, Component A is an alkenyl aromatic polymer which is a melt-processable polymer or melt processable impact-modified polymer in the form of polymerized vinyl aromatic monomers as represented by the structure:
H
2
C═CRAr
wherein R is hydrogen or an alkyl radical that preferably has no more than three carbon atoms and Ar is an aromatic group. R is preferably hydrogen or methyl, most preferably hydrogen. Aromatic groups Ar include phenyl and naphthyl groups. The aromatic group Ar may be substituted. Halogen (such as Cl, F, Br), alkyl (especially C
1
-C
4
alkyl such as methyl, ethyl, propyl and t-butyl), C
1
-C
4
haloalkyl (such as chloromethyl or chloroethyl) and alkoxyl (such as methoxyl or ethoxyl) substituents are all useful. Styrene, para-vinyl toluene, &agr;-methyl styrene, 4-methoxy styrene, t-butyl styrene, chlorostyrene, vinyl naphthalene and the like are all useful vinyl aromatic monomers. Styrene is especially preferred.
The alkenyl aromatic polymer may be a homopolymer of a vinyl aromatic monomer as described above. Polystyrene homopolymers are the most preferred alkenyl aromatic polymers. Interpolymers of two or more vinyl aromatic monomers are also useful.
Although not critical, the alkenyl aromatic polymer may have a high degree of syndiotactic configuration; i.e., the aromatic groups are located alternately at opposite directions relative to the main chain that consists of carbon-carbon bonds. Homopolymers of vinyl aromatic polymers that have syndiotacticity of 75% r diad or greater or even 90% r diad or greater as measured by
13
C NMR are useful herein.
The alkenyl aromatic polymer may also contain repeating units derived from one or more other monomers that are copolymerizable with the vinyl aromatic monomer. Suitable such monomers include N-phenyl maleimide; acrylamide; ethylenically unsaturated nitriles such as acrylonitrile and methacrylonitrile; ethylenically unsaturated carboxylic acids and anhydrides such as acrylic acid, methacrylic acid, fumaric anhydride and maleic anhydride; esters of ethylenically unsaturated acids such as C
1
-C
8
alkyl acrylates and methacrylates, for example n-butyl acrylate and methyl methacrylate; and conjugated dienes such as butadiene or isoprene. The interpolymers of these types may be random, block or graft interpolymers. Blends of interpolymers of this type with homopolymers of a vinyl aromatic monomer can be used. For example, styrene/C
4
-C
8
alkyl acrylate interpolymers and styrene-butadiene interpolymers are particularly suitable as impact modifiers when blended into polystyrene. Such impact-modified polystyrenes are useful herein.
In addition, the alkenyl aromatic polymers include those modified with rubbers to improve their impact properties. The modification can be, for example, through blending, grafting or polymerization of a vinyl aromatic monomer (optionally with other monomers) in the presence of a rubber compound. Examples of such rubbers are homopolymers of C
4
-C
6
conjugated dienes such as butadiene or isoprene; ethylene/propylene interpolymers; interpolymers of ethylene, propylene and a nonconjugated diene such as 1,6-hexadiene or ethylidene norbornene; C
4
-C
6
alkyl acrylate homopolymers or interpolymers, including interpolymers thereof with a C
1
-C
4
alkyl acrylate. The rubbers are conveniently prepared by anionic solution polymerization techniques or by free radical initiated solution, mass or suspension polymerization processes. Rubber polymers that are prepared by emulsion polymerization may be agglomerated to produce larger particles having a multimoda

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

COMPATIBILIZED BLENDS OF ALKENYL AROMATIC POLYMERS,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with COMPATIBILIZED BLENDS OF ALKENYL AROMATIC POLYMERS,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and COMPATIBILIZED BLENDS OF ALKENYL AROMATIC POLYMERS,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2971287

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.