Compact diagnostic connector for a motherboard of data...

Electrical computers and digital data processing systems: input/ – Interrupt processing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C714S025000, C713S002000

Reexamination Certificate

active

06691195

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to data processing systems and, in particular, to data processing system motherboard interfaces. Specifically, the present invention relates to a motherboard connector that supports the performance of diagnostics on data processing system components while occupying only a small portion of the surface of the motherboard, and to a method and system for utilizing such a connector.
2. Description of the Related Art
Conventional personal computer systems (PCs) include a central processing unit (CPU), one or more memory modules, and a motherboard into which the CPU and memory modules are inserted. A chipset mounted to the motherboard by the manufacturer provides core logic that operatively links the CPU, the memory modules, and other components of the system. A read only memory (ROM) chip containing the system's startup program (firmware) is also mounted to the motherboard.
A conventional PC typically also includes input and output (I/O) devices (e.g., a keyboard and a video display), as well as one or more floppy and/or hard disk drives, which are also connected to the motherboard, oftentimes via intermediate adapters. Most general-purpose PCs in operation today also include a dedicated serial port, a dedicated keyboard port, and one or more expansion slots configured to receive expansion cards for augmenting; the PC's functionality. For example, a network expansion card can be inserted into an expansion slot of a general-purpose PC to provide a port for connecting that PC to a local area network (LAN).
When a PC is started, the CPU automatically executes the startup program, which loads and activates a basic input and output system (BIOS) that supports communication between the CPU and the I/O devices. The startup program then loads and activates an operating system (OS) which provides an interface to the hardware of the PC for software applications such as network client software, word processors, web browsers, etc.
Some OSs (such as DOS) provide a relatively simple and limited set of commands for utilizing the PC's hardware. Perhaps the most widely utilized variety of DOS is the OS that has been distributed (in numerous versions) since approximately 1980 by Microsoft Corporation under the trademark MS-DOS. An important characteristics of DOS is that it can operate within systems having relatively limited data storage facilities. Other OSs provide more complex functionality, such as support for networking, security, and/or multi-tasking. However, relative to DOS, these more advanced OSs also require additional hardware resources, particularly the data storage facilities utilized to hold the OS while the system is powered down and the data storage facilities utilized by the OS when the system is active. Examples of such advanced OSs include the OS developed by American Telephone and Telegraph Company and distributed under the trademark UNIX, the OS distributed by International Business Machines Corporation (IBM) under the trademark AIX, other “UNIX-like” OSs, the OS distributed by IBM under the trademark OS/2, and the OSs distributed by Microsoft Corporation under the trademarks WINDOWS 95, WINDOWS 98, and WINDOWS NT.
While a general purpose PC may be customized to fill particular computing needs, advances in technology and changes in the computer market have resulted in the development of special-purpose PCs that differ in configuration from general-purpose PCs. For example, in response to demand for PCs to serve solely as network clients, manufacturers have recently begun producing PCs with motherboards having built-in (or “onboard”) networking circuitry. Further, in order to reduce the complexity and cost of such PCs, and to make room on the motherboard for the necessary onboard components, manufacturers are omitting from those PCs legacy features such as expansion slots and disk drives. These PCs, which are called “thin clients,” “diskless workstations,” “network appliances,” or “Internet appliances,” may even lack dedicated keyboard and serial ports, instead utilizing one or more Universal Serial Bus (USB) ports. (As explained in the Universal Serial Bus Specification Revision 1.1, which may be found on the Internet at http://www.usb.org, and which is hereby incorporated by reference, USB ports employ two data lines that carry data as complementary voltage signals). Furthermore, unlike general purpose PCs, which usually load an operating system from a local hard disk (or other local data storage), when some thin clients are started or restarted (i.e., booted), they automatically load the OS from a remote server. Furthermore, thin clients often do not load DOS, but instead load some other OS (e.g., a UNIX-like OS).
Although it can be appreciated that thin clients provide a cost effective solution to particular computing needs, the lack of legacy features in such systems presents difficulties where execution of applications that perform system diagnostics is concerned. Those difficulties exist because many existing programs for testing PCs are designed to run under DOS and to utilize legacy I/O facilities, but many thin clients do not boot to DOS and do not have legacy I/O ports. Significant time and expense would be required to rewrite existing DOS-based test programs for other OSs. In addition, new system hardware is typically available before any new OS for that hardware, or any new application designed to run under the new OS, have been written. Consequently, what is needed is a way to test thin clients without incurring the delays and expense associated with rewriting existing testing applications for new OSs and without to substantially increasing manufacturing costs. The present invention addresses that need.
SUMMARY OF THE INVENTION
The present invention introduces a compact connector, for a data processing system motherboard, that facilitates the performance of diagnostics on data processing system components. The connector includes first, second, and third terminals in communication with respective first, second, and third lines in the motherboard for serial port interrupts, system data, and keyboard interrupts, respectively.
In an illustrative embodiment, the first and second lines comprise lines of an Industry Standard Architecture (ISA) bus, and the compact connector also includes a fourth terminal in communication with a fourth line in the motherboard for real-time-clock interrupts. This embodiment allows the motherboard to receive real-time-clock interrupts via the connector, so that a startup program of the data processing system may boot to an operating system that requires a real-time-clock. That operating system may then be utilized to test the motherboard. In addition, this embodiment allows one or more input devices in communication with the connector to be utilized to interact with the motherboard.
All objects, features, and advantages of the present invention will become apparent in the following detailed written description.


REFERENCES:
patent: 4654820 (1987-03-01), Brahm et al.
patent: 4904935 (1990-02-01), Calma et al.
patent: 5127004 (1992-06-01), Lenihan et al.
patent: 5333273 (1994-07-01), Raasch et al.
patent: 5440181 (1995-08-01), Gruender et al.
patent: 5659680 (1997-08-01), Cunningham et al.
patent: 5765004 (1998-06-01), Foster et al.
patent: 5815706 (1998-09-01), Stewart et al.
patent: 5848278 (1998-12-01), Sakai
patent: 5878248 (1999-03-01), Tehranian et al.
patent: 5929646 (1999-07-01), Patel et al.
patent: 6113260 (2000-09-01), Genrich et al.
patent: 6405599 (2002-06-01), Patt

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compact diagnostic connector for a motherboard of data... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compact diagnostic connector for a motherboard of data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compact diagnostic connector for a motherboard of data... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3335152

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.