Electrical computers and digital data processing systems: input/ – Input/output data processing – Peripheral adapting
Reexamination Certificate
1998-09-08
2002-02-05
Lee, Thomas (Department: 2182)
Electrical computers and digital data processing systems: input/
Input/output data processing
Peripheral adapting
C710S029000, C710S108000
Reexamination Certificate
active
06345330
ABSTRACT:
This application is being filed concurrently with the application of William W. Y. Chu for “Personal Computer Peripheral Console With Attached Computer Module”, filed on Sep. 8, 1998 now U.S. Pat. No. 6,216,185, and incorporates the material therein by reference.
BACKGROUND OF THE INVENTION
The present invention generally relates to computer interfaces. More specifically, the present invention relates to an interface channel that interfaces two computer interface buses that operate under protocols that are different from that used by the interface channel.
Interfaces coupling two independent computer buses are well known in the art. A block diagram of a computer system utilizing such a prior art interface is shown in FIG.
1
. In
FIG. 1
, a primary peripheral component interconnect (PCI) bus
105
of a notebook PC
100
is coupled to a secondary PCI bus
155
in a docking system
150
(also referred to as docking station
150
) through high pin count connectors
101
and
102
, which are normally mating connectors. The high pin count connectors
101
and
102
contain a sufficiently large number of pins so as to carry PCI bus signals between the two PCI buses without any translation. The main purpose for interfacing the two independent PCI buses is to allow transactions to occur between a master on one PCI bus and a target on the other PCI bus. The interface between these two independent PCI buses additionally includes an optional PCI to PCI bridge
160
, located in the docking station
150
, to expand the add on capability in docking station
150
. The bridge
160
creates a new bus number for devices behind the bridge
160
so that they are not on the same bus number as other devices in the system thus increasing the add on capability in the docking station
150
.
An interface such as that shown in
FIG. 1
provides an adequate interface between the primary and secondary PCI buses. However, the interface is limited in a number of ways. The interface transfers signals between the primary and secondary PCI buses using the protocols of a PCI bus. Consequently, the interface is subject to the limitations under which PCI buses operate. One such limitation is the fact that PCI buses are not cable friendly. The cable friendliness of the interface was not a major concern in the prior art. However, in the context of the computer system of the present invention, which is described in the present inventor's (William W. Y. Chu's) application for “Personal Computer Peripheral Console With Attached Computer Module” filed concurrently with the present application on Sep. 8, 1998 and incorporated herein by reference, a cable friendly interface is desired for interfacing an attached computer module (ACM) and a peripheral console of the present invention. Furthermore, as a result of operating by PCI protocols, the prior art interface includes a very large number of signal channels with a corresponding large number of conductive lines (and a similarly large number of pins in the connectors of the interface) that are commensurate in number with the number of signal lines in the PCI buses which it interfaces. One disadvantage of an interface having a relatively large number of conductive lines and pins is that it costs more than one that uses a fewer number of conductive lines and pins. Additionally, an interface having a large number of conductive lines is bulkier and more cumbersome to handle. Finally, a relatively large number of signal channels in the interface renders the option of using differential voltage signals less viable because a differential voltage signal method would require duplicating a large number of signal lines. It is desirable to use a low voltage differential signal (LVDS) channel in the computer system of the present invention because an LVDS channel is more cable friendly, faster, consumes less power, and generates less noise, including electromagnetic interferences (EMI), than a PCI channel. The term LVDS is herein used to generically refer to low voltage differential signals and is not intended to be limited to any particular type of LVDS technology.
BRIEF SUMMARY OF THE INVENTION
The present invention overcomes the aforementioned disadvantages of the prior art by interfacing two PCI or PCI-like buses using a non-PCI or non-PCI-like channel. In the present invention, PCI control signals are encoded into control bits and the control bits, rather than the control signals that they represent, are transmitted on the interface channel. At the receiving end, the control bits representing control signals are decoded back into PCI control signals prior to being transmitted to the intended PCI bus.
The fact that control bits rather than control signals are transmitted on the interface channel allows using a smaller number of signal channels and a correspondingly small number of conductive lines in the interface channel than would otherwise be possible. This is because the control bits can be more easily multiplexed at one end of the interface channel and recovered at the other end than control signals. This relatively small number of signal channels used in the interface channel allows using LVDS channels for the interface. As mentioned above, an LVDS channel is more cable friendly, faster, consumes less power, and generates less noise than a PCI bus channel, which is used in the prior art to interface two PCI buses. Therefore, the present invention advantageously uses an LVDS channel for the hereto unused purpose of interfacing PCI or PCI-like buses. The relatively smaller number of signal channels in the interface also allows using connectors having smaller pins counts. As mentioned above an interface having a smaller number of signal channels and, therefore, a smaller number of conductive lines is less bulky and less expensive than one having a larger number of signal channels. Similarly, connectors having a smaller number of pins are also less expensive and less bulky than connectors having a larger number of pins.
In one embodiment, the present invention encompasses an apparatus for bridging a first computer interface bus and a second computer interface bus, in a microprocessor based computer system where each of the first and second computer interface buses have a number of parallel multiplexed address/data bus lines and operate at a clock speed in a predetermined clock speed range having a minimum clock speed and a maximum clock speed. The apparatus comprises an interface channel having a clock channel and a plurality of bit channels for transmitting bits; a first interface controller coupled to the first computer interface bus and to the interface channel to encode first control signals from the first computer interface bus into first control bits to be transmitted on the interface channel and to decode second control bits received from the interface channel into second control signals to be transmitted to the first computer interface bus; and a second interface controller coupled to the interface channel and the second computer interface bus to decode the first control bits from the interface channel into third control signals to be transmitted on the second computer interface bus and to encode fourth control signals from the second computer interface bus into the second control bits to be transmitted on the interface channel.
In one embodiment, the first and second interface controllers comprise a host interface controller (HIC) and a peripheral interface controller (PIC), respectively, the first and second computer interface buses comprise a primary PCI and a secondary PCI bus, respectively, and the interface channel comprises an LVDS channel.
In a preferred embodiment, the interface channel has a plurality of serial bit channels numbering fewer than the number of parallel bus lines in each of the PCI buses and operates at a clock speed higher than the clock speed at which any of the bus lines operates. More specifically, the interface channel includes two sets of unidirectional serial bit channels which transmit data in opposite directions such that one
Acqis Technology, Inc.
Cao Chun
Townsend& Townsend&Crew LLP
LandOfFree
Communication channel and interface devices for bridging... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Communication channel and interface devices for bridging..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communication channel and interface devices for bridging... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2981040