Radiant energy – Photocells; circuits and apparatus – Photocell controlled circuit
Reexamination Certificate
2002-10-22
2003-12-16
Le, Que T. (Department: 2878)
Radiant energy
Photocells; circuits and apparatus
Photocell controlled circuit
C250S559400, C382S154000
Reexamination Certificate
active
06664531
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a digitizer combining functions of stereovision, color 3D digitizing and motion capture of a target object, a digitizing system using the digitizer, and associated digitizing and motion tracking methods.
BACKGROUND
3D digitizing, particularly non-contact optical 3D digitizing techniques, have become commercially available during recent years. Most of these techniques are based on the principle of optical triangulation. Despite the fact that passive optical triangulation (stereovision) has been studied and used for many years for photogrammetric measurements, the active optical triangulation technique (particularly laser scanning technique) has gained popularity because of its robustness and simplicity to process the obtained data using a computer. Most of the systems based on the active optical triangulation principle were developed for industrial applications, such as robotics assembly, robot guidance, industrial inspection, reverse engineering, etc. A laser beam or a laser stripe is projected onto a 3D surface of an object, scattering the laser beam or laser stripe on the surface. It is measured using a photo-electronic device. A signal can be measured indicating the position (usually the depth) of the measuring point. In most cases, the basic measurements are either a point or a section profile. A mechanical or optical scanning device is usually used to provide a frame of 3D measurement. Laser is a monochromatic light source that does not provide full color information. So, an additional camera and light source are used when a color texture is needed.
A new category of optical color 3D digitizers, such as the present applicant's product line, has been developed. These systems use structured white light projection combined with a CCD camera allowing for the measurement of 3D geometry and color texture of a surface. The projected structured light (viewed by a camera from an angle different from the light projection) is deformed due to the 3D surface relief. The 3D coordinates of the surface are calculated by analyzing the deformation. These kinds of systems are being used in computer animation, special effects and in electronic game development.
On the other hand, the passive optical triangulation (stereovision, for example) is largely used for the purpose of motion capture. The correspondence problem (automatically finding one point on the object's surface from two optical sensors, cameras in general) is not a major obstacle for this application because only a limited number of points must be measured. These points are often characterized by using visible markers.
Another application of stereovision is stereoscopic 3D display. Instead of determining the 3D coordinates of some points of an object in a 3D space, it simply needs to display a pair of stereoscopic images on a monitor (TV or computer monitor) so that the 3D perspective of an image can be seen. One possible configuration is to capture a pair of images using two cameras, which observe the parallax effect of an object. Then the left eye will view one image of this pair of stereoscopic images and the right eye will view the other. The human brain can easily merge this pair of images so that the object is viewed as a 3D image.
The existing 3D digitizing systems and optical motion capture systems are, in general, complex and too expensive for the Internet and mass consumer applications. Most of these systems incorporate sophisticated optical, electro-optical, mechanical and electronic components. Special expertise is needed to operate such a digitizer. In addition, the existing systems support separately the 3D digitizing and motion capture functions.
SUMMARY
An object of the invention is to provide a digitizer combining functions of capturing stereoscopic images, color 3D digitizing, and motion capture.
Another object of the invention is to provide a system using the digitizer, which is simple in construction, simple to use and affordable for Internet and mass consumer applications like conference via Internet, 3D Web, e-commerce, off-line and on-line games and any application which requires affordable 3D digitizing and/or motion capture solution.
Another object of the invention is to provide methods for digitizing and tracking motion of a target object, which are implementable using a personal computer and simple lighting and video camera components.
According to the present invention, there is provided a digitizer combining functions of stereovision, color 3D digitizing and motion capture of a target object, comprising:
a first camera;
a second camera;
a first projection arrangement having a first light projector providing lighting for an active 3D range sensing for each of the cameras, and a grating element in front of the first light projector for projection of an encoded pattern on a surface of the target object;
a second projection arrangement having a second light projector providing lighting for an acquisition of texture information of the target object;
a base onto which the first and second cameras and the first and second projection arrangements are mounted in fixed relative positions with respect to one another, the cameras having optical axes converging through a single point, one of the light projectors having an optical axis intersecting with the optical axes of the cameras at the single point; and
a communication port connected to the cameras and the light projectors, for reception of control signals setting operation of the cameras and the light projectors and transmission of video signals from the cameras.
According to the present invention, there is also provided a digitizing system comprising a digitizer as above described and a computer having a port connectable with the communication port of the digitizer, functions controlling operation of the digitizer by generating the control signals for the stereovision, color 3D digitizing and motion capture, and functions for a processing of the video signals received through the port and generation of digitized data as a result of the processing.
According to the present invention, there is also provided a method for digitizing a target object, comprising steps of:
capturing basic images of the object with first and second cameras without additional illumination of the object, the cameras having optical axes converging through a single point and being aligned in angled directions with respect to each other so that the cameras have fields of view having significant overlapping portions over a depth of measurement including the single point;
illuminating the object with light in which an encoded pattern is projected;
capturing structured images with the cameras;
illuminating the object with light deprived of a pattern;
capturing texture images with the cameras;
identifying elements of the encoded pattern in the structured images;
determining a position of the elements to produce a set of measured points;
determining 3D coordinates of the measured points using calibration information in respect with position and alignment of the cameras;
determining coordinates corresponding to each measured point in the texture images to produce a digitized image of the object.
According to the present invention, there is also provided a method for tracking motion of a target object, comprising steps of:
capturing in parallel sequences of images of the target object with first and second cameras having optical axes converging through a single point and being aligned in angled directions with respect to each other so that the cameras have fields of view having significant overlapping portions over a depth of measurement including the single point;
detecting control points in a first image of each sequence;
tracking the control points in the sequences of images;
determining disparities between the control points in the images from the first camera and the images from the second camera;
determining 3D positions of the control points in corresponding ones of the images taken at a same time by the first and second
Beauchamp Dominique
Bourassa Yvan
Breton Martin
Gärtner Hansjörg
Lemelin Guylain
Inspeck Inc.
Le Que T.
St. Onge Steward Johnston & Reens LLC
LandOfFree
Combined stereovision, color 3D digitizing and motion... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combined stereovision, color 3D digitizing and motion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined stereovision, color 3D digitizing and motion... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3117959