Electrical computers and digital data processing systems: input/ – Input/output data processing – Input/output access regulation
Reexamination Certificate
2001-01-26
2004-11-09
Park, Ilwoo (Department: 2182)
Electrical computers and digital data processing systems: input/
Input/output data processing
Input/output access regulation
C710S038000, C710S062000, C710S072000, C710S110000, C710S316000
Reexamination Certificate
active
06816925
ABSTRACT:
BACKGROUND
This disclosure relates generally to a computing system and more particularly to a mobile computing system integrating dissimilar computing architectures and wireless communications that are accessible by any one of the systems.
There are currently two popular types of mobile computing systems; the mobile personal computer (PC) and the personal digital assistant (PDA). The mobile PC is a fully functional data processing system, typically having the same functionality as a desktop PC or a workstation PC. The mobile PC typically is known as a “notebook” or “laptop” computer. The mobile PC type runs under any number of operating systems (OS), such as one of the releases of Windows® by the Microsoft Corporation. In implementing the mobile PC in a mobile computing system, several relatively undesirable features are apparent. The batteries of the portable mobile PC device must be recharged after a relatively short time, typically, in the order of a few hours. Despite improvements in battery technology, the quest for lighter and more compact portable units have tended to reduce the space allocated to the batteries so that time between charging of the batteries has not been significantly improved. The batteries used in the portable mobile PC devices, however, are capable of relatively rapid charging. As with the desktop PC unit and the workstation PC from which they are derived, the operating system needed for the mobile PC requires a relatively long time from the activation of the power switch to the time when the processing system is available for actual computation. The mobile PC, however, has remarkable flexibility and can provide processing capability of extraordinary power.
More recently the PDA system has been developed to take advantage of operating systems (OS) such as Palm® OS and Windows® CE. These operating systems, in conjunction with a PDA system, permit a reduced or specialized functionality computing system.
Typically, these PDAs are relatively small and can perform a variety of useful functions such as arrange calendars; schedule appointments; send and receive e-mail; provide presentations; create documents; and provide communications. The PDA OS can permit exchange of files between the PDA systems and a mobile PC with Microsoft Windows® files. While the reduced functionality can be a disadvantage of the PDA, the PDA has several advantages over the mobile PC. An advantage is the time between charging of the batteries can be greatly extended, a result of the reduced functionality and the absence of disk storage units. A PDA has considerable flexibility with respect to expansion. Another advantage is the PDA has its memory loaded in a memory circuit, such as a flash memory, as contrasted with a disk drive for the mobile PC devices. Activation for a PDA is much quicker than a mobile PC. The PDA can be fully functional from the time that it is activated.
Wireless communications have allowed mobile PCs and PDAs to send and receive email; connect to the internet; communicate with other computers; and interface with other devices. Wireless communications categories are wireless wide area network (WWAN) that includes cellular communications; wireless local area networks (WLAN) that includes Institute of Electrical and Electronics Engineers (IEEE) standards 802.11a and 802.11b; and the evolving category of wireless personal area networks (WPAN) that includes evolving “Bluetooth” technology. WWAN includes communicating to distant computers commonly by a cellular connection. WLAN includes communicating to nearby computers or peripheral devices. WPAN is an evolving category, with particular focus on an industry sponsored standard known as “Bluetooth.” WPAN involves a “travelling” communication space around the notebook. The space is analogous to a “bubble” that surrounds and follows the notebook. As the notebook WPAN “bubble” overlaps with technology that recognizes the WPAN technology a communication link is established. For example, in terms of “Bluetooth” technology, a “Bluetooth” equipped notebook would be able to communicate with a “Bluetooth” equipped telephone, allowing the notebook to place and receive calls from the telephone.
Businesses and groups with a number of computers have information technology (IT) specialists that provide technical support to computers including notebooks. It is now common for an IT specialist to be able to access via a WWAN link to a notebook. The IT specialist is able to track the computer and assist a user if there is a problem with the notebooks. PDAs and cellular phones currently do not receive the same type of IT support as notebooks. It would be desirable to have a mobile computing unit that can remain continuously powered on, have a long life battery, consume minimal power, and be accessible at any given moment.
A master and slave computer architecture can be used for the PC and PDA mobile system. The PC system would be treated as a master device and the PDA as a slave. The PC system architecture makes use of a serial port or COM 1, 2, 3, or 4 (legacy device). The PC system communicates on a bus to one of these devices through the serial port. Specific addresses address COM 1, 2, 3, or 4. In a mobile system the PDA OS or the PDA architecture can look like a legacy device (slave) to the PC system (master). In PC systems using an Intel® x86 type processor, a communication protocol is used in this legacy device configuration. Typical applications of the legacy device include interfacing to a network interface card (NIC) on a bus and addressing that particular NIC by a set address.
PC systems have the computing capability and memory to handle all of the communications in a dual PC and PDA computer architecture. The PDA would be dependant on the PC system for any wireless information that may sent or received, since the PC would have to handle all communications. If communication is to take place, the PC system would have to be powered and ready. Current PDA systems are capable of sending email and other communication data and information, however, if a PDA system depends upon a PC system for communication, the PDA can neither receive nor transmit if the PC system is inactive.
Data synchronization between the PC system and the PDA system would also be affected if the PC system handles all communication, with data synchronization depending on when the PC system was active. Data on the PC system synchronizes to the PDA system if an active communication link is established to the PC system. Synchronization depends on three events: synchronization to a device such as server which communicates to the mobile computing system; synchronization of the PC system; and synchronization of the PDA system.
Considering that communication technologies are typically low power technologies, meaning that relatively low energy is consumed, a PDA system with its low power consumption capabilities can readily support communication for a mobile computing system incorporating a PC system while the PC system is inactive. Current wireless technologies and landline technologies, or communication technologies general, are typically low power technology. Considering that the PDA system relies on low-power technology, a direct link to the PDA system can be made.
Typical communications can involve a network interface card (NIC), “Bluetooth” transceivers, LAN or wireless local area network devices, cellular or wireless wide area network transceivers.
A need has been felt for a mobile computing system having the desirable features of a mobile PC and a PDA, and allowing wireless communications to interface to either system. The mobile computing system would have the features of an expanded time between battery charges; would be available for performing user-directed processing functions as soon as the power is applied. The mobile computing system would be capable of performing processing functions available to the full-function PC system; and would have a low-power, reduced functionality mode of operation and an increased power, full functionality mode of operatio
Dell Products L.P.
Haynes and Boone LLP
Park Ilwoo
LandOfFree
Combination personal data assistant and personal computing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combination personal data assistant and personal computing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combination personal data assistant and personal computing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3352088