Combination 37-wire unilay stranded conductor and method and...

Metal working – Method of mechanical manufacture – Electrical device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S03300H, C029S868000

Reexamination Certificate

active

06311394

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to stranded cable manufacturing and, more particularly, to combination 37-wire unilay stranded conductors and a method and apparatus for forming the same.
2. Description of the Prior Art
Compressed stranded cable conductors are well known in the art. Examples are disclosed in U.S. Pat. Nos. 4,473,995; 3,383,704; and 3,444,684. Such cables have normally been preferred over uncompressed cables or compacted cables for several reasons. Compressed conductors typically have a nominal fill factor from about 81% to about 84%. Fill factor is designed as the ratio of the total cross-section of the wires in relation to the area of the circle that envelopes the strand.
Uncompressed cables require the maximum amount of insulation because the cable diameter is not reduced and because interstitial valleys or grooves between the outer strands are filled with insulation material. Typical fill factors for these conductors are about 76%. On the other hand, compact conductors, although eliminating the above-mentioned drawbacks, might have physical properties that are not desirable for specific applications. Typical fill factors for these constructions range from 91% to 97%.
Multi-wire compressed conductor strands are made in different configurations and by many different methods. Each method and configuration has advantages and disadvantages. One approach is to form the strand with a central wire surrounded by one or more helically layered wires. The strand is made by twisting the wires of each layer about the central wire with a wire twisting machine. A reverse concentric strand is one example of a strand made by this method. Each layer of a reverse concentric strand has a reverse lay in successive layers and an increased length of lay with respect to the preceding layer. In the case of a 19-wire conductor strand, two passes might be required through a wire twisting machine to make the strand.
One example of a known strand involves one pass for a 6-wire layer having, for example, a right hand lay over a central wire and a second pass for a 12-wire layer having a left hand lay over the first 6-wire layer. The strand can also be made in one pass with machines having cages rotating in opposite directions applying both layers at the same time, but the productivity of such machines is very low.
A unilay conductor is a second example of a conductor strand having helically laid layers disposed about the central wire. Each layer of a unilay strand has the same direction of lay and the same length of lay. Because each layer has the same lay length and the same direction, the strand may be made in a single pass. As a result, productivity increases.
Unilay strands are used in a variety of configurations and commonly for sizes up to and including 500 Kcm.
These strands can be typically manufactured on a Single Twist, Tubular, Rigid, Planetary Machine and, more recently, on the Double Twist machine. The economic benefits of the Double Twist machine outweigh the other production processes and the Double Twist machine is the preferred system for this product. Historically, the limitations of the process has hindered the widespread use for some products. This occurs primarily because of the two stage closing process and the accessibility of the finished product for forming and shaping.
Referring to
FIG. 1
, one of the most commonly used unilay conductors is a conductor S
1
formed with 19 wires of the same diameter D. In such a strand, the six wires
4
of the inner layer L
1
and the twelve wires
6
of the outer layer L
2
are twisted about the central core wire
2
in the same way and in a concentric pattern. Normally, a hexagonal pattern (dash outline H) is formed, and not the desired round configuration C. This hexagonal configuration presents many basic problems because the circumscribing circle C creates six voids V. These voids are filled with insulation requiring adinsulation for a minimum insulation thickness as compared with a true concentric strand.
Experience has also shown that the wires at the corners tend to change position and to back up during extrusion.
As a result of this concern, engineers in the conductor wire industry have been seeking to develop conductor strands that maintain a circular cross section and increase the uniformity of the conductor section.
One approach is to try to position the outer twelve conductors in such a way as to have each two wires
6
a
,
6
b
at the second layer L
2
perched on the surface of one of the six wires
4
of the first layer L
1
. Such conductor S
2
, shown in
FIG. 2
, is sometimes referred to as having a “smooth body” construction that avoids the problem mentioned above in connection with the conductor S
1
in FIG.
1
.
However, the “smooth body” construction is not stable and cannot be easily achieved on a commercial basis without considerably reducing the lays and, therefore, the productivity of the machine. Furthermore, any variation in wire diameter or tension in the wires can cause the conductor strand to change into the hexagonal configuration, shown in
FIG. 1
, which represents a stable, low energy construction.
Another attempt to solve the problem has been to make a composite strand S
3
in accordance with U.S. Pat. No. 4,471,161 and shown in FIG.
3
. This last construction has the advantage of being stable, but the disadvantage of requiring wires
6
c
,
6
d
with different diameters D
1
, D
2
, in the second layer L
2
. However, in order to maintain a circular cross section, the diameters D
1
, D
2
that must be selected result in gaps or grooves G between the wires into which insulation can penetrate. A variation of this idea is depicted in
FIG. 4
where the 7-wire cover (1+6) is compressed, such compression allowing the small diameter wires
6
d
to move radially inwardly to a degree that substantially eliminates the tangential gaps in the 12-wire layer L
2
.
Another solution has been to use a combination of formed or shaped and round elements or wires to assure that the desired fill factor is realized with a stable strand designed to minimize the outer gap area and optimize the use of the insulating material. One example of such a strand uses a combination of seven “T” shaped elements with 11 round elements “O” providing a stable strand design. Such constructions are shown in publication No. 211091 published by Ceeco Machinery Manufacturing Limited, at page 537-7. In this construction, the outer 11 elements or wires “O” are in contact with each other thereby minimizing the grooves or spaces and the fill factor is approximately 84%. In such an “O/T/O” configuration, the outside wires abut against the flat surfaces of the outer “T” layer and have no tendency to collapse into the minimal spaces or grooves therein. A modification of the aforementioned strand involves various degrees of compression of the outer round wires with the result that the range of fill factors can be increased from approximately 84% to 91%. Because the inner layer of the seven conductors is also compacted in the inner layer, elements produce a substantially cylindrical outer surface with interstitial grooves minimized or substantially eliminated. While this eliminates the aforementioned problem of the outer layer collapsing into the grooves of the inner layer, such cables have fill factors that are too high for some applications.
A modified concentric compressed unilay stranded conductor design is disclosed in U.S. Pat. No. 5,496,969 issued to Nextrom, Ltd., the assignee of the subject application. The conductor, according to the aforementioned patent, is formed of combinations of compressed wires that nominally have equal diameters. The number of wires selected in any two adjacent layers is not divisible by a common integer with the exception of the integer “1”. To achieve such construction, the conductor in one or more of the layers may need to be formed into sectored cross sectional configurations. However, to so form the wires they need to be compressed inwardly. The

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Combination 37-wire unilay stranded conductor and method and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Combination 37-wire unilay stranded conductor and method and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combination 37-wire unilay stranded conductor and method and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2581242

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.