Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Gels or gelable composition
Reexamination Certificate
2002-05-01
2004-03-16
Bhat, N. (Department: 1761)
Food or edible material: processes, compositions, and products
Products per se, or processes of preparing or treating...
Gels or gelable composition
C426S479000, C426S661000, C426S506000
Reexamination Certificate
active
06706306
ABSTRACT:
The present invention is directed to the art of producing an oven stable food paste, such as a filling or topping for use in baked products. The bake products are fruit filled cereal bars, muffins, and cakes. Also, such products are pastries and cookies. More particularly the invention is a cold process to make high solids, pectin containing fruit paste which can be stored for long periods of time, can be pumped onto or into dough structures, and then baked into finished products.
INCORPORATION BY REFERENCE
Oven or bake stable fruit paste, such as fillings or toppings, is normally made by a method involving heating and cooling steps with the disadvantages associated with such hot food processing technology. As a substantial advance in this technology, a cold process was developed and is now widely used to produce a bake stable fruit paste. This cold process is described in Rock U.S. Pat. No. 5,932,270, incorporated by reference herein as background information since much of this prior technology is used to practice the present invention. This prior cold processing method and the present method both utilize a rapid, high power blender known as a Tri-Blender and described in Zimmerly U.S. Pat. No. 3,606,270. This patent is incorporated by reference herein to show generally the type of high speed blender used in practicing the present invention.
BACKGROUND OF INVENTION
The cold processing method as disclosed in Rock U.S. Pat. No. 5,932,270 employs cold water swelling starch as the stabilizer for the fruit paste. This prior cold processing method can not be used with pectin containing fillings, even though pectin stabilized filings can produce a better flavor and better customer acceptance and has a less pasty consistency and good appearance. Consequently, some manufacturers of baked dough products still prefer to use a paste made by the hot pectin process. This pectin process does not have the cost and time advantages of the cold process obtained by the prior art starch stabilizing method. But, it does have the advantages of pectin. Manufacturers of pectin stabilized high solid fruit paste normally use a hot processing technique because of the disadvantage of attempts to use a cold process for pectin stabilized fruit paste. Such hot pectin techniques produce a product with a total solids in excess of 60% and are commonly used in the food industry.
Pectin must be solubilized before being used as a stabilizer. Solubilization involves the dispersing and dissolving of pectin molecules in water. Solubilization involves dispersing pectin by strong agitation in order to separate the pectin particles while avoiding formation of agglomerated lumps. When the pectin particles are separated, and subsequently the pectin molecules themselves individualize, they swell due to exposure to water. By agitation in a large amount of water and with application of heat to facilitate solubilization, the pectin is activated for use in a fruit paste. Solubilization of pectin is normally done by agitation in a high amount of water at high temperature. Pectin solubilization must be addressed in either a hot process or the novel new cold process. Solubilization is required. In the past it was done in a low solids matrix and then used in a hot processing technology. Hot process in the food industry means a substantial amount of heat input and then cooling by heat withdrawal.
To produce a pectin stabilized paste, the pectin is initially solubilized. This is accomplished in a mixture having a total solid content substantially less than the final solids content for the paste. As mentioned, solubilization normally involves heating a low solids content liquid phase to a specific temperature and then adding powdered pectin under high agitation. The pectin is allowed to fully solubilize in a specific period of time while the pectin is exposed to a high percentage of water. It has been the conventional wisdom that pectin can be solubilized or activated only in a liquid phase having a solids content of less than 30% and at a high temperature, such as 160° to 180° F. This was because of difficulty in fully solubilizing and activating the pectin at a solids level greater than 30%. In addition, it is common practice to use high shear mixing of the pectin to fully disperse and dissolve the pectin into the low solids content liquid phase. High shear tends to avoid the formation of fish eyes or pectin lumps that can be detrimental to achieving the full functionality of the pectin. The water volume required to achieve efficient solubilization of the pectin exceeds the water allowed for in a high solids filling. This additional water must be removed either by heat or by a combination of heat and vacuum. Both of these processes add to the processing time and equipment necessary to produce a bake stable fruit paste using the normal hot process. It is further necessary to hold the high water liquid phase containing the solubilized pectin at a constant minimum temperature of about 160-170° F. until the pectin is to be combined with a high solids liquid phase to produce the final product. The high solids liquid phase must be heated to a temperature greater than 160° F. to mix with the pectin phase. This is necessary to avoid pregellation of the pectin as the low solids pectin solution is added to a high solids component or phase to make the paste. Maintaining this temperature, as required in the hot process, is also important because acid and/or calcium source for low methoxyl pectin fillings is added as a final step to the pectin stabilized filling. It is a common industry practice to make and add a 50% acid stock solution for pectin stabilized pastes. The calcium source for low methoxyl pectin fillings is dispersed separately in a small amount of water prior to adding to the batch. If the temperature of the batch is allowed to fall below a certain critical gelling temperature prior to the addition of the acid and/or calcium to gel the pectin, the pectin will prematurely gel and negatively impact the final targeted bake stability of the paste. This critical gelling temperature is dependent upon several factors, including the total solids content, the pH, the pectin concentration and the pectin reactivity, especially when the pectin is a low methoxyl pectin. Once the targeted final solids content for the paste has been reached, the paste must then be cooled mechanically to the fill temperature.
The hot process requires introduction of heat in the form of steam of electricity and, thus, requires substantial input of energy. In a high solids type paste, heating of the product during the processing requires a substantial amount of time and special equipment. Thus, time necessary to produce the product, such as a fruit paste, is increased when using the hot process, which process has heretofore been used when pectin is the stabilizer of choice. In addition, some food products, such as fruit paste used in bakery products, lose a portion of the fresh taste when exposed to a long period of heat before use in a baking operation. The paste takes on the characteristics of cooked fruit. This is commercially detrimental when a natural, fresh filling attribute is required for the end product. Fruit paste, and other food products, which have added flavoring and color pigmentation to enhance the taste, aroma and appearance have these characteristics diminished by using the hot process heretofore required to obtain the advantages of a pectin stabilized product. In most instances, fruit paste and other similar products are stored and then shipped to a bakery for subsequent use. Consequently, the hot paste must be cooled prior to packing. This added process operation increases the process time and increases the equipment required for producing a bake stable fruit paste. When the paste is cooled after it is made by a hot process and prior to packing, added time and equipment are required. This expense is not justified by an enhanced characteristic of a paste using pectin.
In addition to the energy needed to make the paste with a pectin stabilizer,
Hansen John P.
Jindra James A.
Bhat N.
Fay Sharpe Fagan Minnich & McKee
The J. M. Smucker Company
LandOfFree
Cold process method for making an oven stable pectin base... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cold process method for making an oven stable pectin base..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cold process method for making an oven stable pectin base... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3217038