Coherency control module for maintaining cache coherency in...

Electrical computers and digital data processing systems: input/ – Intrasystem connection – Bus access regulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S052000, C710S305000, C710S306000, C711S146000

Reexamination Certificate

active

06823409

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a multi-processor-bus memory system and, more particularly, to an efficient mechanism for filtering processor cache snoops in a multi-processor-bus-system.
2. Description of the Related Art
This section is intended to introduce the reader to various aspects of art which may be related to various aspects of the present invention which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
The use of computers has increased dramatically over the past few decades. In years past, computers were relatively few in number and primarily used as scientific tools. However, with the advent of standardized architectures and operating systems, computers soon became virtually indispensable tools for a wide variety of business applications. Perhaps even more significantly, in the past ten to fifteen years with the advent of relatively simple user interfaces and ever increasing processing capabilities, computers have now found their way into many homes.
The types of computer systems have similarly evolved over time. For example, early scientific computers were typically stand alone systems designed to carry out relatively specific tasks and required relatively knowledgeable users. As computer systems evolved into the business arena, mainframe computers emerged. In mainframe systems, users utilized “dumb” terminals to provide input to and to receive output from the mainframe computer while all processing was done centrally by the mainframe computer. As users desired more autonomy in their choice of computing services, personal computers evolved to provide processing capability on each users desktop. More recently, personal computers have given rise to relatively powerful computers called servers. Servers are typically multi-processor computers that couple numerous personal computers together in a network. In addition, these powerful servers are also finding applications in various other capacities, such as in the communications and Internet industries.
Computers today, such as the personal computers and servers discussed above, rely on microprocessors, associated chip sets, and memory chips to perform most of their processing functions. Because these devices are integrated circuits formed on semi-conducting substrates, the technological improvements of these devices have essentially kept pace with one another over the years. In contrast to the dramatic improvements of the processing portions of the computer system, the mass storage portion of the computer system has experienced only modest growth in speed and reliability. As a result, computer systems failed to capitalize fully on the increased speed of the improving processing systems due to the dramatically inferior capabilities of the mass data storage devices coupled to the systems.
There are a variety of different memory devices available for use in microprocessor-based systems. The type of memory device chosen for a specific function within a microprocessor-based system generally depends upon which features of the memory are best suited to perform the particular function. There is often a tradeoff between speed and cost of memory devices. Memory manufacturers provide an array of innovative, fast memory chips for various applications. Dynamic Random Access Memory (DRAM) devices are generally used for main memory in computer systems because they are relatively inexpensive. When higher data rates are necessary, Static Random Access Memory (SRAM) devices may be incorporated at a higher cost. To strike a balance between speed and cost, computer systems are often configured with cache memory. Cache memory is a special high-speed storage mechanism which may be provided as a reserved section of the main memory or as an independent high-speed storage device. A memory cache is a portion of the memory which is made of the high speed SRAM rather than the slower and cheaper DRAM which is used for the remainder of the main memory. Memory caching is effective since most computer systems implement the same programs and request access to the same data or instructions repeatedly. By storing frequently accessed data and instructions in the SRAM, the system can minimize its access to the slower DRAM.
Some memory caches are built into the architecture of the microprocessor themselves, such as the Intel 80486 microprocessor and the Pentium processor. These internal caches are often called level 1 (L1) caches. However, many computer systems also include external cache memory or level 2 (L2) caches. These external caches sit between the central processing unit (CPU) and the DRAM. Thus, the L2 cache is a separate ship residing externally with respect to the microprocessor. However, despite the apparent discontinuity in nonmanclature, more and more microprocessors are incorporating larger caches into their architecture and referring to these internal caches as L2 caches. Regardless of the term used to describe the memory cache, the memory cache is simply an area of memory which is made of Static RAM to facilitate rapid access to often used information.
As previously discussed, frequently accessed data may be stored in the cache memory area of main memory. Thus, the portion of the system which is accessing the main memory should be able to identify what area of main memory it must access to retrieve the required information. A “tag RAM” identifies which data from the main memory is currently stored in each cache line. The data is stored in the cache. The values stored in the tag RAM determine whether the actual data can be retrieved quickly from the cache or if the requesting device will have to access the slower DRAM portion of the main memory. The size of the data store determines how much data the cache can hold at any one time. The size of the tag RAM determines what range of main memory can be cached. Many computer systems, for example, are configured with a 256 k L2 cache and tag RAM that is 8 bits wide. This is sufficient for caching up to 64 MB of main memory.
In a multi-processor system, each processor may have a corresponding main memory, with each main memory reserving a portion for cache memory. The process of managing the caches in a multi-processor system is complex. “Cache coherence” refers to a protocol for managing the caches of a multi-processor system so that no data is lost or over-written before the data is transferred from a cache to a requesting or target memory. Each processor may have its own memory cache that is separate from a larger shared RAM that the individual processors will access. When these multi-processors with separate caches share a common memory, it is necessary to keep the caches in a state of coherence by insuring that any shared operand that has changed in any cache is changed throughout the entire system. Cache coherency is generally maintained through either a directory based or a snooping system. In a directory based system, the data being shared is placed in a common directory that maintains the coherence between the caches. The directory acts as a filter through which the processor must ask permission to load an entry from the primary memory to its cache. When an entry is changed, the directory either updates or invalidates the other caches with that entry. Disadvantageously, directory based coherency systems add to the cycle time (previously reduced by the implementation of cache memory) by requiring that each access to the cache memory go through the common directory. In typical snooping systems, all caches on a bus monitor (or snoop) the bus to determine if they have a copy of the block of data that is requested on the bus. Every cache has a copy of the sharing status of every block of physical memory it has.
Thus, cache coherence aims at solvin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coherency control module for maintaining cache coherency in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coherency control module for maintaining cache coherency in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coherency control module for maintaining cache coherency in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3354852

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.