CMOS fabrication process with differential rapid thermal...

Semiconductor device manufacturing: process – Introduction of conductivity modifying dopant into... – Ion implantation of dopant into semiconductor region

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S197000, C438S211000, C438S230000, C438S231000, C438S519000, C438S530000, C257S410000

Reexamination Certificate

active

06333244

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to integrated circuits and to methods of manufacturing integrated circuits. More particularly, the present invention relates to a method of manufacturing integrated circuits having CMOS transistors with an optimized annealing scheme.
BACKGROUND OF THE INVENTION
Integrated circuits (ICs), such as, ultra-large scale integrated (ULSI) circuits, can include as many as one million transistors or more. The ULSI circuit can include complementary metal oxide semiconductor (CMOS) field effect transistors (FETs). The transistors can include semiconductor gates disposed between drain and source regions. The drain and source regions are typically heavily doped with a P-type dopant (boron) or an N-type dopant (phosphorous).
The drain and source regions generally include a thin extension that is disposed partially underneath the gate to enhance the transistor performance. Shallow source and drain extensions help to achieve immunity to short-channel effects which degrade transistor performance for both N-channel and P-channel transistors. Short-channel effects can cause threshold voltage roll-off and drain-induced barrier-lowering. Thus, controlling short channel effects is important to assuring proper semiconductor operation.
Conventional techniques utilize a double implant process to form shallow source and drain extensions. According to the conventional process, the source and drain extensions are formed by providing a transistor gate structure without sidewall spacers on a top surface of a silicon substrate. The silicon substrate is doped on both sides of the gate structure via a conventional doping process, such as, a diffusion process or ion implantation process. Without the sidewall spacers, the doping process introduces dopants into a thin region (i.e., just below the top surface of the substrate) to form the drain and source extensions as well as to partially form the drain and source regions.
After the drain and source extensions are formed, silicon dioxide spacers, which abut lateral sides of the gate structure, are provided over the source and drain extensions. The substrate is doped a second time to form the deeper source and drain regions. The source and drain extensions are not further doped due to the blocking capability of the silicon dioxide spacers.
As transistors disposed on integrated circuits (ICs) become smaller, transistors with shallow and ultra-shallow source/drain extensions have become more difficult to manufacture. Manufacturing is more difficult because the vertical dimensions associated with the depths of source/drain junctions and the thin extensions to the source/drain junctions must be decreased in a ratio corresponding to the reduction in lateral dimension of the manufactured MOSFET. For example, smaller transistors should have ultra-shallow source and drain extensions (less than 30 or 40 nanometer (nm) junction depth). Forming source and drain extensions with junction depths of less than 30 nm is very difficult using conventional fabrication techniques. Conventional ion implantation, diffusion doping and activation techniques make transistors on the IC susceptible to a dopant profile tail distribution that extends deep into the substrate. Also, conventional ion implantation techniques have difficulty maintaining shallow source and drain extensions because point defects generated in the bulk semiconductor substrate during ion implantation can cause the dopant to more easily diffuse (transient enhanced diffusion, TED). The diffusion often extends the source and drain extension vertically into the bulk semiconductor substrate.
As the critical dimensions for transistors are minimized, the total thermal budget (Bt) that the drain and source regions and the semiconductor gate experience becomes more critical. In general, the thermal budget for dopant activation in the source/drain junction (including source/drain extension) should be as low as possible to provide good formation of an ultra-shallow junction. Fundamentally, reducing the thermal budget has several advantages including: (1) more accurate formation of ultra-shallow junctions; (2) formation of ultra-tight dopant profiles, such as, profiles for halo implants or retro-graded channel implants; and (3) reduction of dopant penetration through the gate oxide and into the gate (e.g., Boron (B) in P-channel MOSFETs). Both shallow source and drain extensions and tight profile pocket regions help to improve the immunity of a transistor to short-channel effects.
Taking advantage of the results attainable via a lower thermal budget, conventional processes have reduced thermal budgets for CMOS transistor fabrication by utilizing a rapid thermal annealing (RTA) to heat the substrate. RTA does not require a significant period of time to heat the substrate. Another approach involves a spike RTA which increases the ramping rate of RTA. Nonetheless, the substrate must be exposed to the RTA for a time period of one second or more to appropriately diffuse and activate dopants.
According to conventional processes, the polysilicon gate and source and drain regions are implanted (doped) during the same fabrication step. After doping the gate and source and drain regions, the substrate is subject to a heating process which activates the dopant in both the gate and in source and drain regions. However, electrical activation of dopants in the gate requires a relatively high thermal budget (e.g., higher temperature than activation of dopants in the source and drain regions). The higher thermal budget increases the active dopant concentration in the gate which gives the transistor more drive current due to reduced gate-depletion effect. As described above, higher temperatures (higher thermal budgets) increase the susceptibility of the transistor to short channel effects. Because dopant activation in the source/drain junctions and dopant activation in the polysilicon gate have incompatible temperature requirements, optimizing the heating step for both the gate and for the source and drain regions is difficult.
Thus, there is a need for a method of manufacturing CMOS transistors that does not utilize a single RTA process for the gate and the source and drain regions. Further still, there is a need for transistors that are not as susceptible to gate depletion effect and short channel effects. Even further still, there is a need for an efficient method of manufacturing source and drain regions and polysilicon-based gate conductors.
SUMMARY OF THE INVENTION
An exemplary embodiment is related to a method of manufacturing an integrated circuit. The method includes providing a material disposed over a semiconductor substrate and implanting nitrogen into the material according to a gate pattern. The nitrogen implant forms a nitrogen barrier in the material above the semiconductor substrate. Next, the material is doped and a portion of the material is removed according to the gate pattern. After removal, a gate conductor, including a portion of the doped material and a portion of the nitrogen barrier, remains above the semiconductor substrate. Next, the gate conductor is annealed. After the gate conductor is annealed, the substrate is doped for source and drain regions and the substrate is annealed to form the source and drain regions.
Another embodiment is related to a method of manufacturing an integrated circuit including a plurality of field effect transistors having shallow source and drain extensions. The method includes steps of forming at least part of a p type gate structure on a top surface of a semiconductor substrate, and annealing the gate structure. The gate structure includes a nitrogen barrier above the semiconductor substrate. The method also includes providing a shallow amorphization implant, providing a deep amorphization implant, and annealing the substrate. The shallow amorphization implant creates a shallow amorphous region near the top surface. The deep amorphization implant creates a deep amorphous region in the substrate.
Yet another embodiment relates to a met

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

CMOS fabrication process with differential rapid thermal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with CMOS fabrication process with differential rapid thermal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CMOS fabrication process with differential rapid thermal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2595962

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.