Circuits for fanning out data in a programmable self-timed...

Electronic digital logic circuitry – Multifunctional or programmable – Array

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C326S038000

Reexamination Certificate

active

07746110

ABSTRACT:
Circuits for fanning out data in a self-timed integrated circuit. An exemplary integrated circuit includes a plurality of interconnected logic blocks, each including a logic circuit and an output circuit. The output circuit has a first data input coupled to a first output of the logic circuit, a second data input coupled to a second output of the logic circuit, and a data output coupled to a first output of the logic block. The data output reflects a value on the first data input. The output circuit is programmably coupled, in one of a plurality of operating modes, to provide an output token only when the first data input is accompanied by a first token indicating valid new data on the first data input. The output circuit is further programmably coupled to consume, when the output token is provided, both the first token and a second token accompanying the second data input.

REFERENCES:
patent: 5208491 (1993-05-01), Ebeling et al.
patent: 5367209 (1994-11-01), Hauck et al.
patent: 6150838 (2000-11-01), Wittig et al.
patent: 6184712 (2001-02-01), Wittig et al.
patent: 6208163 (2001-03-01), Wittig et al.
patent: 6486709 (2002-11-01), Sutherland et al.
patent: 6522170 (2003-02-01), Durham et al.
patent: 6590424 (2003-07-01), Singh et al.
patent: 6708193 (2004-03-01), Zeng
patent: 6958627 (2005-10-01), Singh et al.
patent: 7157934 (2007-01-01), Teifel et al.
patent: 7196543 (2007-03-01), Young et al.
patent: 7202698 (2007-04-01), Bauer et al.
patent: 7274211 (2007-09-01), Simkins et al.
patent: 7467175 (2008-12-01), Simkins et al.
patent: 7467177 (2008-12-01), Simkins et al.
patent: 7472155 (2008-12-01), Simkins et al.
patent: 7480690 (2009-01-01), Simkins et al.
patent: 7504851 (2009-03-01), Manohar et al.
patent: 7505304 (2009-03-01), Manohar et al.
patent: 2005/0144210 (2005-06-01), Simkins et al.
patent: 2006/0164119 (2006-07-01), Nowak-Leijten
patent: 2006/0190516 (2006-08-01), Simkins et al.
patent: 2006/0195496 (2006-08-01), Vadi et al.
patent: 2006/0206557 (2006-09-01), Wong et al.
patent: 2006/0212499 (2006-09-01), New et al.
patent: 2006/0230092 (2006-10-01), Ching et al.
patent: 2006/0230093 (2006-10-01), New et al.
patent: 2006/0230094 (2006-10-01), Simkins et al.
patent: 2006/0230095 (2006-10-01), Simkins et al.
patent: 2006/0230096 (2006-10-01), Thendean et al.
patent: 2006/0288069 (2006-12-01), Simkins et al.
patent: 2006/0288070 (2006-12-01), Vadi et al.
patent: 2007/0252617 (2007-11-01), Lewis et al.
patent: 2007/0256038 (2007-11-01), Manohar
patent: 2008/0168407 (2008-07-01), Manohar
patent: 2009/0289660 (2009-11-01), Ngai et al.
U.S. Appl. No. 12/417,007, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,010, filed Apr. 2, 2009, Young.
U.S. Appl. No. 12/417,012, filed Apr. 2, 2009, Young.
U.S. Appl. No. 12/417,013, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,015, filed Apr. 2, 2009, Young.
U.S. Appl. No. 12/417,018, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,020, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,024, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,033, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,036, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,040, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,043, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,046, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,048, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,051, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,054, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,057, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/174,905, filed Jul. 17, 2008, Young et al.
U.S. Appl. No. 12/174,926, filed Jul. 17, 2008, Young.
U.S. Appl. No. 12/174,945, filed Jul. 17, 2008, Young.
U.S. Appl. No. 12/174,956, filed Jul. 17, 2008, Young.
U.S. Appl. No. 12/174,972, filed Jul. 17, 2008, Young et al.
Achronix Semiconductor Corp.,Introduction to Achronix FPGAs, WP001 Rev. 1.6, Aug. 7, 2008, pp. 1-7, available from Achronix Semiconductor Corp., San Jose, California, USA.
Achronix Semiconductor Corp.,Speedster FPGA Family, PB001 v3.5, copyright 2008, pp. 1-2, available from Achronix Semiconductor Corp., San Jose, California, USA.
Asato, Creighton et al., “A Data-Path Multiplier with Automatic Insertion of Pipeline Stages”IEEE Journal of Solid-State Circuits, Apr. 1990, pp. 383-387, vol. 25, No. 2.
Borriello, F. et al., “The Triptych FPGA Architecture”IEEE Transactions on Very Large Scale Integration(VLSI)Systems, Dec. 1990, pp. 491-501, vol. 3, No. 4.
Callaway, Thomas K., “Optimizing Arithmetic Elements for Signal Processing”Proc. of the 1992 Workshop on VLSI Signal Processing, Oct. 28-30, 1992, vol. V, pp. 99-100, Napa Valley, California, USA.
Habibi, I. et al., “Fast Multipliers,”IEEE Transactions on Computers, Feb. 1970, pp. 153-157, vol. C-19, Issue 2.
Halfhill, Tom, “Ambric's New Parallel Processor,”Microprocessor Report, Oct. 10, 2006, pp. 1-9, available from In-Stat, 2055 Gateway Place, San Jose, California, USA, or http://www.mpronline.com.
Hauck, Scott et al., “Montage: An FPGA for Synchronous and Asynchronous Circuits”Field-Programmable Gate Arrays: Architecture and Tools for Rapid Prototyping, 1999, pp. 44-51, publ. by Springer Verlag, Berlin, Germany.
Hauck, Scott et al., “An FPGA for Implementing Asynchronous Circuits”IEEE Design and Test of Computers, Fall 1994, pp. 60-69, vol. 11, No. 3.
Hauck, Scott, “Asynchronous Design Methodologies: An Overview,”Proc. of the IEEE, Jan. 1995, pp. 69-93, vol. 83, No. 1.
Hauser, John,The Garp Architecture, Oct. 1997, pp. 1-56, University of California at Berkeley, USA.
Huang, Randy,Hardware-Assisted Fast Routing for Runtime Reconfigurable Computing, Fall 2004, pp. 1-43, dissertation submitted to University of California at Berkeley, USA.
Jain, Surendra K. et al., “Efficient Semisystolic Architectures for Finite-Field Arithmetic”IEEE Transactions on Very Large Scale Integration(VLSI)Systems, Mar. 1998, pp. 101-113, vol. 6, No. 1.
Maden, B. et al., “Parallel Architectures for High Speed Multipliers”Proc. of the 1989 IEEE International Symposium on Circuits and Systems, May 8-11, 1989, pp. 142-145, Portland, Oregon.
Martin, Alain et al., “The Design of an Asynchronous Microprocessor,”Proc. Decennial Caltech Conference on VLSI, Mar. 20-22, 1989, pp. 1-23.
Meier, Pascal C. H. et al., “Exploring Multiplier Architecture and Layout for Low Power”Proc. of the 1996 IEEE Custom Integrated Circuits Conference, May 5-8, 1996, pp. 513-516.
Muhammad, Khurram et al., “Switching Characteristics of Generalized Array Multiplier Architectures and their Applications to Low Power Design”Proc. of the 1999 IEEE International Conference on Computer Design, Oct. 10-13, 1999, pp. 230-235, Austin, Texas, USA.
Panato, Alex et al., “Design of Very Deep Pipelined Multipliers for FPGAs”Proc. of the Design, Automation and Test in Europe Conference and Exhibition Designers' Forum, Feb. 16-20, 2004, pp. 52-57, vol. 3, Paris, France.
Payne, R., “Asynchronous FPGA Architecture,”IEE Proc.-Comput. Digit. Tech., Sep. 1996, pp. 282-286, vol. 143, No. 5.
Sparso, J.,Asynchronous Circuit Design—A Tutorial, copyright 2006, pp. 1-179, available from the Technical University of Denmark, Kgs. Lyngby, Denmark.
Teifel, John et al., “Highly Pipelined Asynchronous FPGAs”Proc. of the 2004 ACM-SIGDA International Symposium on Field Programmable Gate Arrays, Feb. 22-24, 2004, pp. 133-142, Monterey, California, USA.
Tsu, William et al., “High-Speed, Hierarchical Synchronous Reconfigurable Array,”Proc. of the 1999 ACM/SIGDA 7thInternational Symposium on Field Programmable Gate Arrays, Feb. 21-23, 1999, pp. 125-134, Monterey, California, USA.
Wikipedia, “C-element,” downloaded Jul. 17, 2008 from http://en.wikipedia.org/C-element pp. 1-2.
Xilinx, Inc., “XtremeDSP Design Considerations,”DSP: Designing for Optimal R

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Circuits for fanning out data in a programmable self-timed... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Circuits for fanning out data in a programmable self-timed..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circuits for fanning out data in a programmable self-timed... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4153025

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.