Circuit for efficiently testing memory and shadow logic of a...

Error detection/correction and fault detection/recovery – Pulse or data error handling – Memory testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C714S727000, C714S733000

Reexamination Certificate

active

06263461

ABSTRACT:

FIELD OF THE INVENTION
The field of the present invention pertains to built in self testing of memory integrated circuits. More particularly, the present invention pertains to a method and system for an efficient built in test of an integrated circuit which includes memory.
BACKGROUND OF THE INVENTION
Computer systems, software applications, and the devices and processes built around them are continually growing in power and complexity. Society's reliance on such systems is likewise increasing, making it critical that the systems obey the properties their designers intended. Typically, the more powerful and complex the system, the greater its utility and usefulness. However, as these computer and software implemented systems and processes become more powerful, detecting and correcting flaws within the systems becomes increasingly difficult.
As integrated circuits, and particularly memory integrated circuits, have become more complex and more dense, they have become progressively harder to test in order to ensure correct and complete functionality. For example, with current technology, as memory size increases, the time which a memory integrated circuit (e.g., DRAM) emerging from a fabrication process line spends in testing increases as well. This increase incurs an additional cost on DRAM manufacturing. The testing cost can be very significant for the latest and largest memories. In addition, as more complex systems-on-a-chip devices proliferate, which integrate DRAM with other functions onto a single chip, and as newly designed processors begin to take advantage of the ability to integrate large quantities of memory on-chip, it has become necessary to incorporate elaborate testing circuitry directly into these devices in order to adequately test them.
The incorporated testing circuitry is adapted to test two general areas of the integrated circuit, the memory elements, and the logic/processing elements. For example, in the case of integrated circuits which incorporate both memory and logic, there are usually two main areas which need to be tested, the memory block and the shadow logic surrounding the memory block. The memory block is the circuit structure which stores the actual data, while the shadow logic is the surrounding gates and logic elements needed to interface the memory block with other external circuits. In order to adequately test the DRAM, both areas (e.g., the shadow logic and the memory block) need to be tested. However, in a typical prior art DRAM, the shadow logic is very hard to test independently with respect to the memory block.
In the prior art, the shadow logic (e.g., the logic gates surrounding the memory block) are particularly hard, if not impossible, to precisely test. The shadow logic is hard to test in isolation from the memory block in an efficient manner. Hence, the challenge presented by modern DRAM integrated circuits is that it is difficult to perform an isolated test on the DRAM memory block and an isolated test on the shadow logic. In accordance with the prior art, a built-in test circuit typically tests the memory block and ignores the shadow logic.
In the case of integrated circuits incorporating both memory and logic functions, where there is often no direct connection between external pins and the integrated memory, external testing using external devices can be even more difficult and even more imprecise. Direct access to the embedded memory may not exist. Consequently, to ensure the bits of the memory block are tested adequately, lengthy “test vectors” are required. Because of this, these types of integrated circuits are even more difficult to properly test.
Thus, what is needed is a method for testing the shadow logic without incurring a large silicon area penalty. What is needed is a system which allows an isolated test on the shadow logic and also allows an isolated test on the DRAM. What is further needed is a system to allow isolated testing without incurring excessive silicon area penalties. The present invention provides a novel solution to the above requirements.
SUMMARY OF THE INVENTION
The present invention provides a circuit for testing both the shadow logic and the memory of a semiconductor integrated circuit without incurring a large silicon area penalty. The circuit of the present invention provides the ability to perform isolated testing on the shadow logic and performs isolated testing on the memory. In addition, the circuit of the present invention efficiently provides these capabilities without incurring excessive silicon area penalties.
In one embodiment, the present invention comprises a circuit for efficiently performing shadow logic testing and memory block testing within a semiconductor integrated circuit. The integrated circuit includes a memory block for storing data. A shadow logic circuit is coupled to the memory block for interfacing the memory block with external circuitry. The shadow logic provides inputs to the memory block and receives data outputs from the memory block. A test collar is coupled between the memory block and the shadow logic. The test collar receives the data inputs from the shadow logic and receives the data outputs from the memory block. The test collar is configured to both provide test inputs to the shadow logic and capture test outputs from the shadow logic independent of the memory block. In a similar manner, the test collar is also configured to both provide tests inputs to the memory block and capture test outputs from the memory block independent of the shadow logic. Thus, the built in test circuit of the present invention is able to perform precise isolated testing on the memory block and perform precise isolated testing on the shadow logic.
The components of the test collar of the present invention are multifunctional in that they function during both shadow logic testing mode and memory block testing mode. In so doing, the total gate count of the integrated circuit is reduced and silicon area is conserved. Additionally, the test collar of the present invention provides accessibility to both the memory and the shadow logic even though they may both be deeply embedded within the integrated circuit with no direct access to the input-output pins of the integrated circuit. This advantage is useful in the case of an integrated circuit where one or more memory blocks are embedded with other logic systems, as in, for example, a single-chip computer system.


REFERENCES:
patent: 3961254 (1976-06-01), Cavalier et al.
patent: 4070565 (1978-01-01), Borelli
patent: 4912395 (1990-03-01), Sato et al.
patent: 5805605 (1998-09-01), Lee et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Circuit for efficiently testing memory and shadow logic of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Circuit for efficiently testing memory and shadow logic of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circuit for efficiently testing memory and shadow logic of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2475990

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.