Circuit configuration for driving a programmable link

Static information storage and retrieval – Read/write circuit – Having fuse element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S189090, C365S189120

Reexamination Certificate

active

06807123

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a circuit configuration for driving a programmable link and to the use thereof in a memory chip.
In memory chips, for example synchronous dynamic random access memories (SDRAMs), having a memory space of 256 megabits, for example, memory cells which can compensate for production-dictated failures of individual memory cells are usually provided for the purpose of providing redundancy. For this purpose programmable links, also referred to as fuses, are provided, which enable defective memory cells to be replaced by intact replacement cells. A few thousand fuses are provided in 256-megabit RAMs by way of example.
The fuses can be permanently reprogrammed with regard to their state of conduction in a known manner either by an energy pulse in the form of a laser or by an electrical pulse, for example a voltage or current pulse. In this case, a distinction is made between what are called fuses, which can be put into a non-conducting (high-impedance) state from a conducting (low-impedance) state by an energy pulse described, and antifuses, which can be changed from a non-conducting state to a conducting state by application of an energy pulse.
In semiconductor memory chips, the so-called programming, activation or blowing of fuses, which is a one-time operation which permanently changes the fuse from a low-impedance to a high-impedance state or from a high impedance state to a low-impedance state, has usually been effected hitherto by a laser prior to encapsulation of the memory chip. However, this is associated with the disadvantage that it is no longer possible to repair defective memory cells after encapsulation of the chip.
Furthermore, it is customary to replace the memory cells of an entire word line in a memory chip, but the replacement of individual addresses of memory cells, so-called single address repair, is desirable.
When fuses are blown by current or voltage pulses, which is also possible, in principle, after encapsulation of a chip, the problem can arise that the simultaneous blowing of a plurality of fuses entails an impermissibly high current consumption in the circuit.
In a mass memory chip, it is normally desirable, on the one hand, to program a replacement of defective memory cells by redundant, intact memory cells in real time, since, in the case of present-day memory chip clock rates of above 100 MHz, it is not possible to blow fuses within a clock period, that is to say before the next potential access to the repaired memory cell. On the other hand, such fast memories are usually volatile memories, and so permanent programming of a fuse is additionally necessary.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a circuit configuration for driving a programmable link that overcomes the above-mentioned disadvantages of the prior art devices of this general type, in which it is possible to rapidly read from and write to volatile memories coupled to the drive circuit for the programmable link.
With the foregoing and other objects in view there is provided, in accordance with the invention, a circuit configuration for driving a programmable link. The circuit configuration contains a volatile memory having an address input and a volatile memory cell connected to the address input for feeding in an information item. The volatile memory is coupled to the programmable link for permanently storing a datum from the volatile memory cell to the programmable link. A shift register has a register cell coupled to the volatile memory cell in a read direction and in a write direction for a data transfer between the register cell and the volatile memory cell.
The programmable link may be configured as a fuse or as an antifuse.
A programmable link configured as a fuse undergoes transition from a low-impedance to a high-impedance state of conduction upon application of an energy pulse. A programmable link configured as an antifuse undergoes transition from a high-impedance to a low-impedance state of conduction upon application of an energy pulse. The transition from one state of conduction to another is normally an irreversible operation in both cases.
For the addressing of a defective memory cell of an SDRAM or another memory module it is possible to provide a plurality of bits, for example, for each of which a circuit configuration described is provided. In this case, the respective shift registers may be connected to one another serially in order to form a shift register chain. In other words, an input of one shift register may be connected to an output of another shift register. With the shift register which is coupled to the register cell of the shift register in a read direction and in a write direction, it is possible to serially read from and write to the memory cells of the respective volatile memories respectively assigned to a programmable link. This requires a particularly low outlay on circuitry. The writing and reading can be effected particularly rapidly with the circuit configuration described.
With the programmable link, the information stored temporarily in the volatile memory cell is stored permanently. With the shift register described, the information items that are to be stored permanently, for example, are written to the respective memory cells of the assigned programmable links. Furthermore, the circuit configuration described enables a rapid read-out of the information items stored in the programmable links via the volatile memory, which is coupled to the programmable link for the read-out thereof, and also by use of the shift register or a shift register chain formed from a plurality of shift registers.
By way of example, a bit of an address of a defective memory cell, to be repaired, of an SDRAM can be stored in the memory cell of the volatile memory.
The coupling between the volatile memory and the programmable link for the permanent storage of a datum from the memory cell of the volatile memory can be effected by a drive circuit, for example, which provides an energy pulse necessary for blowing or programming the programmable link (fuse). In this case, the read direction is understood to be the data transfer from the memory cell or an output of the memory cell of the volatile memory into the shift register. In this case, the write direction is understood to be the data transfer from the register cell of the shift register to the memory cell or an input of the memory cell of the volatile memory.
In one preferred embodiment of the present invention, a write transistor is provided, which is connected to a write input by its control input and which couples the register cell to the memory cell by its controlled path and a read transistor is provided, which is connected to a read input by its control input and which couples an output of the memory cell to the shift register by its controlled path.
In a further preferred embodiment of the invention, a drive circuit is provided for driving the programmable link with an energy pulse, the drive circuit being coupled to the memory cell of the volatile memory for the communication of a data signal. The drive circuit enables a datum to be read out in a simple manner from the volatile memory and this data signal to be fed to the drive circuit. The fuse either may or may not be blown or programmed by the energy pulse, depending on whether, for example, a zero or a one is read out.
In a further preferred embodiment of the invention, the drive circuit for controlling the energy pulse is coupled to the shift register for the communication of an activation signal. In addition to the possibility of writing to and reading from the memory cell in the volatile memory by the shift register, the shift register can simultaneously be used for activating a fuse blowing operation. This enables targeted subsequent blowing of fuses which, for example, could not be programmed during a first programming attempt. Moreover, an impermissibly high blowing current as a result of blowing too many programmable links can simult

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Circuit configuration for driving a programmable link does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Circuit configuration for driving a programmable link, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circuit configuration for driving a programmable link will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3276301

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.