Circuit and method for testing a memory device

Static information storage and retrieval – Read/write circuit – Testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06714468

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to the field of integrated circuits and, in particular, to a circuit and method for testing a memory device.
BACKGROUND OF THE INVENTION
Many electronic systems include a memory device, such as a Dynamic Random Access Memory (DRAM), to store data. A typical DRAM includes an array of memory cells. Each memory cell includes a capacitor that stores the data in the cell and a transistor that controls access to the data. The capacitor includes two conductive plates. One plate of each capacitor is typically coupled to a common node with a plate of each of the other capacitors. This plate is referred to as the “cell plate.” The charge stored across the capacitor is representative of a data bit and can be either a high voltage or a low voltage.
Data can be either stored in the memory cells during a write mode, or data may be retrieved from the memory cells during a read mode. The data is transmitted on signal lines, referred to as digit lines, which are coupled to input/output (I/O) lines through transistors used as switching devices. For each bit of data stored, its true logic state is available on an I/O line and its complementary logic state is available on an I/O complement line. Thus, each memory cell has two digit lines, digit and digit complement.
Typically, the memory cells are arranged in an array and each cell has an address identifying its location in the array. The array includes a configuration of intersecting conductive lines and memory cells are associated with the intersections of the lines. In order to read from or write to a cell, the particular cell in question must be selected, or addressed. The address for the selected cell is represented by input signals to a word line decoder and to a digit line decoder. The word line decoder activates a word line in response to the word line address. The selected word line activates the access transistors for each of the memory cells in communication with the selected word line. The digit line decoder selects a digit line pair in response to the digit line address. For a read operation the selected word line activates the access transistors for a given word line address, and data is latched to the digit line pairs.
Inevitably, the fabrication process for a memory device will produce some defective cells. A cell is defective, for example, when the capacitor is not formed properly and acts as a short circuit thus preventing the cell from accurately storing data. These defective cells must be replaced for the memory device to function properly. To this end, designers typically provide a number of extra cells in a memory device. When the device is tested, bad cells are identified and repaired out with the extra cells using known techniques.
Cells in the area of a shorted cell may also be unacceptable for storing data due to the influence of the short circuit on the cell plate voltage. When a word line associated with a bad cell is fired, the shorted capacitor allows the sense amplifier to move the voltage on the cell plate by some amount in the region around the bad cell. Given enough time, the sense amplifier would pull the cell plate toward either the power supply voltage or ground potential. Thus, when the cells that surround a shorted capacitor are restored after a read, the cell plate is not at the correct voltage due to the influence of the short. Once the sense amplifier stops firing, the cell plate returns to its normal voltage during precharge/equilibration procedures. As the cell plate changes voltage, the stored potential on the other plate of the capacitor in each of these cells is also changed. Depending on the amount of movement of the cell plate voltage caused by the short, some adjacent cells may not provide reliable output. Since the amount of cell plate movement is a function of time, current testing techniques use long test periods to determine whether the shorted capacitor eventually will allow the cell plate to move too much so that adjacent cells prove to provide unacceptable results when tested.
For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for an improved circuit and method for testing a memory device.
SUMMARY OF THE INVENTION
The above mentioned problems with memory devices and other problems are addressed by the present invention and which will be understood by reading and studying the following specification. A circuit and method for testing a memory device is described which drives the cell plate with less current during at least a portion of the test mode so that the effect of a short circuited capacitor on surrounding cells is amplified and defective cells can be identified more quickly.
In particular, an illustrative embodiment of the present invention provides a method for testing a memory device. The method writes test data to an array of cells of the memory device during a test mode. The method calls for driving a cell plate of the memory device during at least a portion of the test with a current level that is less than the current used during normal operation. In one embodiment, the method drives the cell plate with the reduced current level while a sense amplifier is active during operation of the test. This amplifies the affect of defective cells on the cell plate voltage thereby allowing identification of unacceptably weak cells with shorter, less strenuous tests.
In another embodiment, the present invention provides a memory device. The memory device includes an array of memory cells that are accessible by addressing circuitry coupled to the array of memory cells. Each cell of the array includes a capacitor for storing data. The capacitors share a common cell plate. The memory device includes a voltage generator that is coupled to the cell plate to maintain the cell plate at a selected voltage. The voltage generator provides a first current level during a portion of a test mode and a second, different current level during normal operation. The reduced current level during test mode allows for quicker, less strenuous testing of the memory device to identify weak, unacceptable cells.
In another embodiment, the present invention provides a memory device. The memory device includes a number of memory cells. The memory cells each include a capacitor with one node coupled to a common cell plate. The memory device further includes a number of intersecting word and digit lines. The memory cells are addressably coupled at the intersections of the word and digit lines. The memory device includes a voltage generator coupled to the cell plate that provides an adjustable current output to drive the cell plate.
In another embodiment, the present invention provides a method for generating a voltage. The method provides for receiving a control signal that indicates a desired current level output. The method further provides for generating a voltage with a voltage generator. The method sets the output current level of the voltage generator in response to the control signal.


REFERENCES:
patent: 5317532 (1994-05-01), Ochii
patent: 5337272 (1994-08-01), Suwa et al.
patent: 5640340 (1997-06-01), Fink
patent: RE35645 (1997-10-01), Tobita
patent: 5822258 (1998-10-01), Casper
patent: 10-040698 (1998-02-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Circuit and method for testing a memory device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Circuit and method for testing a memory device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circuit and method for testing a memory device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3272479

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.