Chip scale surface mounted device and process of manufacture

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Die bond

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S762000, C257S784000, C257S786000

Reexamination Certificate

active

06624522

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to semiconductor devices and more specifically relates to a process for the low cost manufacture of a novel semiconductor device.
Semiconductor devices and housings are well known. In prior art devices, the housing area is frequently a large multiple of the area of the semiconductor device. Further, in many known semiconductor device packages, heat is taken out only from one side of the die, usually the bottom surface. Further, in present packages the manufacturing process is costly, using single device handling techniques.
More specifically, in present semiconductor devices, particularly power MOSgated devices, the top contact (the source) is generally an aluminum contact containing about 1.0% silicon (hereafter an aluminum contact). The aluminum contact is used because it is well adapted to the wafer manufacturing process. However, it is difficult to form electrical connections to such aluminum contacts so a wire bond process is usually used in which a wire is ultrasonically bonded to the underlying aluminum contact. These wire-bond connections have a limited area and are thus a source of electrical resistance (R
DSON
) and of heat generation during operation. However, the bottom drain contact is frequently a trimetal which is easily solderable or otherwise electrically connectable to a wide area contact surface without wire bonding as shown, for example, in U.S. Pat. No. 5,451,544. Heat is primarily removed from the silicon die at the back contact surface, even though most heat is generated at the junction in the top surface and at the wire bonds.
It is further known that solderable top contacts can be made to the top surface of a die, as shown in U.S. Pat. No. 5,047,833. However, the packages used for such solderable top contact structures have had very large “footprints” in comparison to the die area.
It would be desirable to produce a package design and process for its manufacture which would use a smaller package for the same die, while improving electrical characteristics such as R
DSON
of a MOSgated semiconductor type device. It would be further desirable to produce such devices in a process which permits batch handling with reduced equipment on the production line and lower costs.
BRIEF SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, the source side of a MOSgated device wafer is covered with a passivation layer, preferably a photosensitive liquid epoxy, or a silicon nitride layer, or the like. The wafer is coated by a spinning, screening, or otherwise depositing the liquid epoxy onto the wafer surface. The material is then dried and the coated wafer is exposed using standard photolithographic techniques to image the wafer and openings are formed in the passivation layer to produce a plurality of spaced exposed surface areas of the underlying source metal and a similar opening to expose the underlying gate electrode of each die on the wafer. Thus, the novel passivation layer acts as a conventional passivation layer, but further acts as a plating resist (if required) and as a solder mask, designating and shaping the solder areas. The openings in the novel passivation layer can be made through to a conventional underlying solderable top metal such as a titanium/tungsten
ickel/silver metal. Alternatively, if the underlying metal is the more conventional aluminum metal the exposed aluminum can be plated with nickel and gold flash or other series of metals, resulting in a solderable surface, using the passivation as a plating resist. The tops of the plated metal segments are easily solderable, or otherwise contacted with low resistance, as compared to the high resistance connection of the usual wire bond to an aluminum electrode.
The source contact areas may have various geometries and can even constitute a single large area region.
The wafer is then sawn or otherwise singulated into individual die. The individual die are then placed source-side down and a U-shaped or cup shaped, partially plated drain clip is connected to the solderable drain side of the die, using a conductive epoxy or solder, or the like to bond the drain clip to the bottom drain electrode of the die. The bottoms of the legs of the drain clip are coplanar with the source-side surface (that is the tops of the contact projections) of the die. The outer surface of the die is then over molded in a mold tray. A large number of die with such drain clips can be simultaneously molded in the mold tray.
The bonding material may be protected with a fillet of passive material or by overmolding all, or a part of the assembly. The parts can be made in production by using a lead frame, a continuous strip, or by molding devices in a single block and singulating devices from that block.
After molding, the devices are tested and laser marked and are again sawn into individual devices.


REFERENCES:
patent: 5047833 (1991-09-01), Gould
patent: 5451544 (1995-09-01), Gould
patent: 5814884 (1998-09-01), Davis et al.
patent: 5904499 (1999-05-01), Pace
patent: 6486003 (2002-11-01), Fjelstad
International Search Report dated Jun. 19, 2001 from corresponding PCT Application No. PCT/US01/10074.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chip scale surface mounted device and process of manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chip scale surface mounted device and process of manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chip scale surface mounted device and process of manufacture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102397

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.