Chip on board and heat sink attachment methods

Semiconductor device manufacturing: process – Coating of substrate containing semiconductor region or of... – Combined with the removal of material by nonchemical means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S122000, C438S127000

Reexamination Certificate

active

06784113

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention: This invention relates generally to integrated circuit packages and methods of package assembly. More particularly, the present invention pertains to the manufacture of Chip On Board devices with heat sinks for high power dissipation.
State of the Art: Semiconductor devices are used in a wide variety of products, including computers, automobiles, integrated circuit cards, audio/video products, and a plethora of other electronic apparatus.
Modern electronic appliances such as computers have hundreds of integrated circuits (IC) and other electronic components, most of which are mounted on printed circuit boards (PCB). Heat is generated by such components. The heat generated by many ICs and other electronic components with simple circuits may often be dissipated without an additional heat sink. However, components requiring added heat sinks are becoming more numerous as the required speed, circuit complexity, and circuit density have increased.
In particular, as semiconductor devices have become more dense in terms of electrical power consumption per unit volume, heat generation has greatly increased, requiring package construction which dissipates the generated heat much more rapidly. As the state of the art progresses, the ability to adequately dissipate heat is often a severe constraint on the size, speed, and power consumption of an integrated circuit design.
The term “heat sink” is used herein in general reference to a passive heat transfer device, for example, an extruded aluminum plate with or without fins thereon. The plate is thermally coupled to an electronic component, e.g., semiconductor die, to absorb heat from the component and dissipate the heat by convection into the air. In this application, a heat sink will be distinguished from a “heat spreader,” the latter pertaining to a member which channels heat from a semiconductor die to leads which exit the die package. However, a heat sink and a heat spreader may together be used to cool a device.
Integrated circuit devices are constructed by making, e.g., a (silicon or germanium) semiconductor die with internal and surface circuits including transistors, resistors, capacitors, etc. A single semiconductor die may contain thousands of such components and generate considerable heat. Electrical connection pads on an “active” surface of the semiconductor die are connected to the various die circuits. The integrated circuit device also includes electrical leads enabling the electrical connection pads of the semiconductor die to be connected to circuits on a PCB (or other substrate) of an appliance.
Dissipation of generated thermal energy is necessary for safe operation of an electronic appliance. An excessively high temperature of an IC may cause a circuit board fire and damage or destroy the appliance. High temperatures cause failure of the integrated circuits themselves. State of the art methods for absorbing and dissipating thermal energy from high speed Chip On Board (COB) semiconductor devices are inadequate for any or all of the following reasons: (a) insufficient heat transfer capability, (b) excessively large package size, especially the profile height, (c) complexity of manufacture, and/or (d) excessive cost.
Current methods of forming glob topped Chip On Board devices with heat sinks are shown in U.S. Pat. No. 5,552,635 of Kim et al., U.S. Pat. No. 5,477,082 of Buckley III et al., U.S. Pat. No. 5,468,995 of Higgins III, U.S. Pat. No. 5,610,442 of Schneider et al., and U.S. Pat. No. 5,659,952 of Kovac et al.
In U.S. Pat. No. 5,450,283 of Lin et al., a method for making a semiconductor device with an exposed die back side is described. The method includes providing a printed wiring board (PWB) substrate with conductive traces, on which a semiconductor die is flip mounted and connected to the conductive traces. An electrically nonconductive coupling material is placed between the die and substrate. A package body is formed around the perimeter of the die, covering a portion of the conductive traces and any portion of the coupling material extending beyond the die perimeter. The back side of the die is left exposed through the use of a thin layer of tape placed in the mold cavity prior to the transfer molding of the package body around the die to prevent the flow of molding material forming the package from flowing on the inactive back side of the die. If the thin layer of tape adheres to the die after removal of the semiconductor device from the mold cavity, the thin layer of tape is removed from the die of the semiconductor device.
A device made with multiple layers of encapsulant is shown in U.S. Pat. No. 5,379,186 of Gold et al.
SUMMARY OF THE INVENTION
In accordance with the invention, an improved method for fabricating a Chip On Board semiconductor device requiring enhanced heat dissipation is applicable to direct attachment of semiconductor devices, such as dynamic memory semiconductor dice, to substrates, such as circuit boards and the like, and to the formation of modules incorporating a substrate, such as a circuit board.
In one aspect of the invention, an elastomer is used to cover a portion of a semiconductor die prior to glob top application of the die to the circuit board. The elastomer is removed, e.g., by peeling, from the die surface and includes any glob top material which has inadvertently been applied to the elastomer. Thus, the portion of the semiconductor die remains free of contaminants. If desired, since a portion of the semiconductor die is free of contaminants, providing a good adhesion surface, a heat sink may be attached to such portion of the semiconductor die. The method is applicable to both wire-bonded dies and flip-chip die bonding to circuit boards. Alternately, the elastomer may be retained on a portion of the semiconductor die after the molding or glob-topping of the die for the attachment of a heat sink thereto, if desired. The elastomer may be a highly thermally conductive elastomer to enhance the heat transfer from the semiconductor die to the surrounding environment. An example of a highly thermally conductive elastomer is a metal-filled elastomer or an elastomer filled with a highly thermally conductive material like metal.
The preferred elastomer is highly heat conductive, very compliant, has a relatively low adhesiveness and a high surface wetting property, all the type of properties that enhances heat transfer from the semiconductor die.
In another aspect of the invention, a heat conductive cap is formed over a semiconductor die and comprises a heat sink. A layer of the metal-filled gel elastomer is placed between the non-active surface of a die and the cap. Compressing the die into the cap forms the desired adhesion to retain the die within the cap. The compliance of the elastomer enables the die and cap to be pressed together without overpressuring the die/circuit board interface. In addition, the high thermal conductivity of the elastomer enables devices having a very high heat output to be cooled to temperatures enabling reliable operation.
The method of the invention includes steps for forming direct die-to-circuit board connections for “heat sinked” dice as well as for forming “heat sinked” die modules which may be themselves connected to a substrate such as a circuit board.
These and other features and advantages will be more clearly understood from the following detailed description when taken in conjunction with the accompanying drawings. It is important to note that the illustrations are not necessarily drawn to scale, and that there may be other embodiments of the invention which are not specifically illustrated. Like elements of the various figures are designated by like numerals.


REFERENCES:
patent: 4024570 (1977-05-01), Hartmann et al.
patent: 4059467 (1977-11-01), Mancke et al.
patent: 4059708 (1977-11-01), Heiss, Jr. et al.
patent: 4081825 (1978-03-01), Koopman et al.
patent: 4143456 (1979-03-01), Inoue
patent: 4264917 (1981-04-01), Ugon
patent: 4300153 (1981-11-01), Hayakawa et al.
patent: 4323914 (1982-0

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chip on board and heat sink attachment methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chip on board and heat sink attachment methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chip on board and heat sink attachment methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3323382

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.