Chemically amplified positive photoresists

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S271100, C430S326000, C430S910000

Reexamination Certificate

active

06300035

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to new photoresist compositions particularly suitable for deep U.V. exposure and having the capability of forming highly resolved features submicron dimension.
2. Background
Photoresists are photosensitive films for transfer of images to a substrate. They form negative or positive images. After coating a photoresist on a substrate, the coating is exposed through a patterned photomask to a source of activating energy such as ultraviolet light to form a latent image in the photoresist coating. The photomask has areas opaque and transparent to activating radiation that define a desired image to be transferred to the underlying substrate. A relief image is provided by development of the latent image pattern in the resist coating. The use of photoresists is generally described, for example, by Deforest, Photoresist Materials and Processes, McGraw Hill Book Company, New York (1975), and by Moreau, Semiconductor Lithography, Principals, Practices and Materials, Plenum Press, New York (1988).
More recently, certain “chemically amplified” photoresist compositions have been reported. Such photoresists may be negative-acting or positive-acting and rely on many crosslinking events (in the case of a negative-acting resist) or deprotection reactions (in the case of a positive-acting resist) per unit of photogenerated acid. In other words, the photogenerated acid acts catalytically. In the case of the positive chemically amplified resists, certain cationic photoinitiators have been used to induce cleavage of certain “blocking” groups pendant from a photoresist binder, or cleavage of certain groups that comprise a photoresist binder backbone. See, for example, U.S. Pat. Nos. 5,075,199; 4,968,581; 4,883,740; 4,810,613; and 4,491,628, and Canadian Patent Application 2,001,384. Upon selective cleavage of the blocking group through exposure of a coating layer of such a resist, a polar functional group is provided, e.g., carboxyl or imide, which results in different solubility characteristics in exposed and unexposed areas of the resist coating layer.
An important property of a photoresist is image resolution. A developed photoresist image of fine line definition, including lines of sub-micron and sub-half micron dimensions and having vertical or essentially vertical sidewalls is highly desirable to permit accurate transfer of circuit patterns to an underlying substrate. However, many current photoresists are not capable of providing such highly resolved fine line images.
Another important property of a photoresist is photospeed, which can be defined as the exposure time coupled with the exposure energy required to activate the photoactive component, e.g. to generate the required amount of photoacid to provide the desired solubility differential between exposed and unexposed areas of a photoresist coating layer.
It can be critical that a resist's photospeed is within an acceptable and consistent range or value to permit desired processing of the resist. For instance, sufficiently high photospeed is important in many processes, e.g. where a number of exposures are needed such as in generating multiple patterns by a step and repeat process, or where activating energy of reduced intensity is employed. Sufficiently high photospeed also permits reduction in the concentration of the radiation sensitive component in the photoresist. On the other hand, a resist that is “too fast”, i.e. has too high photospeed, can be undesirable. For example, an extremely high photospeed may compromise resolution of the patterned resist image and/or exposure equipment may not be well suited to image fast resists.
Moreover, a consistent photospeed of a resist can be critical, e.g. so that a device manufacturer can use the same imaging conditions and obtain consistent results despite lot-to-lot differences of a resist product (such as precise amount and/or nature of photoactive compound, resin, etc.) that may frequently occur, particularly in large scale resist manufacturing processes. However, many current resists do not exhibit such consistent photospeed, and consequently a device manufacturer may either realize inconsistent results as different lots of a resist formulation are used, or the device manufacturer may be forced to carefully test the photospeed of each new lot of resist and then adjust the parameters of the exposure equipment to provide for consistent processing. Clearly, either alternative is undesirable.
Relatively recently interest has increased in photoresists that can be photoimaged with deep U.V. radiation. Such photoresists offer the potential of forming images of smaller features than may be possible at longer wavelength exposure. As is recognized by those in the art, “deep U.V. radiation” refers to exposure radiation having a wavelength in the range of about 350 nm or less, more typically in the range of about 300 nm or less. While a number of deep U.V. resists have been reported, the need clearly exists for new deep U.V. resists that can provide highly resolved fine line images as well as acceptable photospeed and other lithographic properties.
It thus would be desirable to have new chemically amplified photoresist compositions that could provide highly resolved fine line images, including images of sub-micron and sub-half micron dimensions. It would be further desirable to have such new photoresist compositions that could be imaged with deep U.V. radiation. It would be particularly desirable to have such a chemically amplified photoresist where the resist's photospeed was capable of being carefully controlled to a specific value or narrow range of values.
SUMMARY OF THE INVENTION
The present invention provides new photoresist compositions that in general comprise 1) a resin binder having photoacid labile groups, 2) an acid generator and 3) a photospeed control agent.
It has been found that photoresists of the invention can provide highly resolved relief images of small dimensions, including lines of sub-micron and sub-half micron dimensions with vertical or essentially vertical side walls.
It also has been surprisingly found that the photospeed control agent imparts an acceptable photospeed to resists of the invention.
Moreover, the photospeed control agent enables providing a consistent photospeed of the resist. That is, the photospeed of a particular resist composition of the invention can be precisely fixed at a specified value by use of the photospeed control agent. This is a significant advantage as photospeed differences between production lots of the resist can be compensated for by use of the photospeed control agent to provide uniform photospeed. In this regard, the invention includes methods for providing a consistent photospeed of the resist compositions of the invention, which comprise adjusting the photospeed of a resist composition to a desired value by altering the concentration of the photospeed control agent in the composition.
The photospeed control agent is preferably a strong base, particularly an organic amine, and more preferably is an organic salt of a strong base. Ammonium and phosphonium are particularly preferred bases to use in salt form. Especially preferred are salts of a compound substituted by hydroxy and carbonyl such as a lactate salt as well as sulfonyl salts such as a triflate or tosylate. It has been found that a photospeed control agent counter ion that is a hydroxy-substituted alkanoyl provides better performance results than a comparable composition that includes a counter ion of a photospeed control agent that is an alkanoyl without hydroxy substitution.
Phenolic resins are generally preferred resin binders of resists of the invention. Particularly preferred are copolymers of vinyl phenol and other copolymerizable group(s), especially where the acid labile groups are present substantially, essentially or completely only on non-phenolic units of the copolymer. Preferred copolymer binders include copolymers that comprise substituted or unsubstituted phenol(s) and one or more

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chemically amplified positive photoresists does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chemically amplified positive photoresists, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemically amplified positive photoresists will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2553934

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.