Chemical mechanical polisher equipped with chilled wafer...

Abrading – Precision device or process - or with condition responsive... – Controlling temperature

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S053000, C451S287000

Reexamination Certificate

active

06705923

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to a chemical mechanical polisher for polishing semiconductor wafers and a method of using and more particularly, relates to a chemical mechanical polisher that is equipped with a chilled wafer holder and polishing pad and a method for using the chemical mechanical polisher.
BACKGROUND OF THE INVENTION
Apparatus for polishing thin, flat semiconductor wafers is well-known in the art. Such apparatus normally includes a polishing head which carries a membrane for engaging and forcing a semiconductor wafer against a wetted polishing surface, such as a polishing pad. Either the pad, or the polishing head is rotated and oscillates the wafer over the polishing surface. The polishing head is forced downwardly onto the polishing surface by a pressurized air system or, similar arrangement. The downward force pressing the polishing head against the polishing surface can be adjusted as desired. The polishing head is typically mounted on an elongated pivoting carrier arm, which can move the pressure head between several operative positions. In one operative position, the carrier arm positions a wafer mounted on the pressure head in contact with the polishing pad. In order to remove the wafer from contact with the polishing surface, the carrier arm is first pivoted upwardly to lift the pressure head and wafer from the polishing surface. The carrier arm is then pivoted laterally to move the pressure head and wafer carried by the pressure head to an auxiliary wafer processing station. The auxiliary processing station may include, for example, a station for cleaning the wafer and/or polishing head; a wafer unload station; or, a wafer load station.
More recently, chemical-mechanical polishing (CMP) apparatus has been employed in combination with a pneumatically actuated polishing head. CMP apparatus is used primarily for polishing the front face or device side of a semiconductor wafer during the fabrication of semiconductor devices on the wafer. A wafer is “planarized” or smoothed one or more times during a fabrication process in order for the top surface of the wafer to be as flat as possible. A wafer is polished by being placed on a carrier and pressed face down onto a polishing pad covered with a slurry of colloidal silica or alumina in de-ionized water.
A schematic of a typical CMP apparatus is shown in
FIGS. 1A and 1B
. The apparatus
20
for chemical mechanical polishing consists of a rotating wafer holder
14
that holds the wafer
10
, the appropriate slurry
24
, and a polishing pad
12
which is normally mounted to a rotating table
26
by adhesive means. The polishing pad
12
is applied to the wafer surface
22
at a specific pressure. The chemical mechanical polishing method can be used to provide a planar surface on dielectric layers, on deep and shallow trenches that are filled with polysilicon or oxide, and on various metal films. CMP polishing results from a combination of chemical and mechanical effects. A possible mechanism for the CMP process involves the formation of a chemically altered layer at the surface of the material being polished. The layer is mechanically removed from the underlying bulk material. An altered layer is then regrown on the surface while the process is repeated again. For instance, in metal polishing, a metal oxide may be formed and removed repeatedly.
A polishing pad is typically constructed in two layers overlying a platen with the resilient layer as the outer layer of the pad. The layers are typically made of polyurethane and may include a filler for controlling the dimensional stability of the layers. The polishing pad is usually several times the diameter of a wafer and the wafer is kept off-center on the pad to prevent polishing a non-planar surface onto the wafer. The wafer is also rotated to prevent polishing a taper into the wafer. Although the axis of rotation of the wafer and the axis of rotation of the pad are not collinear, the axes must be parallel. It is known in the art that uniformity in wafer polishing is a function of pressure, velocity and the concentration of chemicals. Edge exclusion is caused, in part, by a non-uniform pressure applied on a wafer. The problem is reduced somewhat through the use of a retaining ring which engages the polishing pad.
Referring now to
FIG. 1C
, wherein an improved CMP head
20
, sometimes referred to as a Titan® head which differs from conventional CMP heads in two major respects is shown. First, the Titan® head employs a compliant wafer carrier and second, it utilizes a mechanical linkage (not shown) to constrain tilting of the head, thereby maintaining planarity relative to a polishing pad
12
, which in turn allows the head to achieve more uniform flatness of the wafer during polishing. The wafer
10
has one entire face thereof engaged by a flexible membrane
16
, which biases the opposite face of the wafer
10
into face-to-face engagement with the polishing pad
12
. The polishing head and/or pad
12
are moved relative to each other, in a motion to effect polishing of the wafer
10
. The polishing head includes an outer retaining ring
14
surrounding the membrane
16
, which also engages the polishing pad
12
and functions to hold the head in a steady, desired position during the polishing process. As shown in
FIG. 1C
, both the retaining ring
14
and the membrane
16
are urged downwardly toward the polishing pad
12
by a linear force indicated by the numeral
18
which is effected through a pneumatic system.
The enlarged cross-sectional representation of the polishing action which results form a combination of chemical and mechanical effects is shown in FIG.
1
B. The CMP method can be used to provide a planner surface on dielectric layers, on deep and shallow trenches that are filled with polysilicon or oxide, and on various metal films. A possible mechanism for the CMP process involves the formation of a chemically altered layer at the surface of the material being polished. The layer is mechanically removed from the underlying bulk material. An outer layer is then regrown on the surface while the process is repeated again. For instance, in metal polishing, a metal oxide layer can be formed and removed repeatedly.
During a CMP process, a large volume of a slurry composition is dispensed. The slurry composition and the pressure applied between the wafer surface and the polishing pad determine the rate of polishing or material removal from the wafer surface. The chemistry of the slurry composition plays an important role in the polishing rate of the CMP process. For instance, when polishing oxide films, the rate of removal is twice as fast in a slurry that has a pH of 11 than with a slurry that has a pH of 7. The hardness of the polishing particles contained in the slurry composition should be about the same as the hardness of the film to be removed to avoid damaging the film. A slurry composition typically consists of an abrasive component, i.e, hard particles and components that chemically react with the surface of the substrate.
For instance, a typical oxide polishing slurry composition consists of a colloidal suspension of oxide particles with an average size of 30 nm suspended in an alkali solution at a pH larger than 10. A polishing rate of about 120 nm/min can be achieved by using this slurry composition. Other abrasive components such as ceria suspensions may also be used for glass polishing where large amounts of silicon oxide must be removed. Ceria suspensions act as both the mechanical and the chemical agent in the slurry for achieving high polishing rates, i.e, larger than 500 nm/min. While ceria particles in the slurry composition remove silicon oxide at a higher rate than do silica, silica is still preferred because smoother surfaces can be produced. Other abrasive components, such as alumina (Al
3
O
2
) may also be used in the slurry composition.
The polishing pad
28
is a consumable item used in a semiconductor wafer fabrication process. Under normal wafer fabrication conditions, the polishing pad is repl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chemical mechanical polisher equipped with chilled wafer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chemical mechanical polisher equipped with chilled wafer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical mechanical polisher equipped with chilled wafer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3255580

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.