Dispensing – Processes of dispensing
Reexamination Certificate
1999-10-14
2001-07-24
Kaufman, Joseph A. (Department: 3754)
Dispensing
Processes of dispensing
C222S061000, C222S152000, C222S189060, C222S399000, C222S481500
Reexamination Certificate
active
06264064
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
The present invention relates to chemical delivery systems, and in particular to an apparatus and method for delivering high-purity or ultra-high purity chemicals to a use point, such as a semiconductor fabrication facility or tool(s) for chemical vapor deposition. Although the invention may have other applications, it is particularly applicable in semiconductor fabrication.
Semiconductor manufacturers require chemicals having at least a high-purity for production processes to avoid defects in the fabrication of semiconductor devices. The chemicals used in the fabrication of integrated circuits usually must have an ultra-high purity to allow satisfactory process yields. As integrated circuits have decreased in size, there has been an increase in the need to maintain the purity of source chemicals.
One ultra-high purity chemical used in the fabrication of integrated circuits is tetraethylorthosilicate (TEOS). The chemical formula for TEOS is (C
2
H
5
O)
4
Si. TEOS is used widely in integrated circuit manufacturing operations such as chemical vapor deposition (CVD) to form silicon dioxide films.
Integrated circuit fabricators typically require TEOS with 99.999999+%(8-9's+%) purity with respect to trace metals. Overall, the TEOS must have a 99.99+% purity. This high degree of purity is necessary to maintain satisfactory process yields. It also necessitates the use of special equipment to contain and deliver the high-purity or ultra-high purity TEOS to CVD reaction chambers.
High-purity chemicals and ultra-high purity chemicals, such as TEOS, are delivered from a bulk chemical delivery system to a use point, such as a semiconductor fabrication facility or tool(s). A delivery system for high-purity chemicals is disclosed in U.S. Pat. No. 5,465,766 (Seigele, et al.). (Related patents issued to the same inventors and assigned to the same assignee are U.S. Pat. Nos. 5,562,132; 5,590,695; 5,607,002; 5,711,354; and 5,878,793.) The system comprises: a bulk canister located in a remote chemical cabinet with a delivery manifold/purge panel; a refillable stainless steel ampule to supply high-purity source chemicals to an end user; and a control unit to supervise and control the refill operation and to monitor the level of the bulk container. The system has two basic modes of operation: (1) a normal process operation during which high-purity source chemical is supplied to the end user; and (2) the refill mode of operation during which the refillable stainless steel ampule is refilled with high-purity chemical.
The bulk container is continuously pressurized with an inert gas (e.g., helium), which forces the high-purity source chemical from the bulk container through a refill line and to the ampule. A metallic level sensor assembly in the ampule contains a metallic level sensor. The metallic level sensor preferably is a dual level sensor capable of detecting two separate levels of source chemical in the ampule and has two trigger points—a “high level” (full) condition and a “high-high level” condition.
A metallic level sensor assembly for the bulk container comprises a dual level metallic level sensor with trigger points, which provide signals indicating the levels of high-purity chemical in the bulk container. At least one of the trigger points generates a “low level” signal indicative of a level at which the bulk container should be replaced. The sensor is a metallic float level sensor, which includes a metallic float slidably mounted on a metallic shaft. The metallic float rises and falls as the level of high-purity chemical rises above one of the trigger points and drops below one of the trigger points. One of the trigger points is for detecting when the high-purity chemical is near the “empty” level in the bulk container and another trigger point is for detecting when the high-purity chemical is at a “low level” in the bulk container.
It is desirable to determine when the bulk container in such delivery systems is “empty” for several reasons. First, the customer wants to use as much chemical from each container as possible for economical reasons. Second, to avoid any interruption in operations, it is desirable to replace the bulk container as soon as possible after it reaches empty. Also, complete use of the chemical in the bulk container avoids potential problems associated with disposal of chemicals left in the container after it is removed from service.
A weigh scale may be used to determine when the bulk container is approaching “empty.” However, the purchase of a weigh scale means additional capital investment. Also, such a method of determining the approach of “empty” usually results in leaving a liquid heel in the container, which is not desirable.
Metallic float sensor assemblies, such as in the patents issued to Seigele, et al., are known sources of metallic particles, which are contaminants in the electronics industry. Sliding metal-to-metal contact causes the shedding of metal particles and dissolution of metal ions, thus contaminating the high-purity TEOS or other high-purity source chemical in the delivery systems. In addition to being generators of contaminants, float level sensors do not operate well in chemicals having relatively high viscosities (e.g., tantalum pentaethoxide, TAETO).
There are various other types of level sensors used for detection of an “empty” or “approaching empty” condition. The different types of sensors include optical, reed/float, capacitance, differential pressure, and load cells/strain gauges. There are disadvantages associated with each of these types of sensors. For example, differential pressure and load cells/strain gauges only detect down to about 3% to 5% level. Optical, reed/float, and capacitance sensors require a probe, a potential source of contaminants, to be inserted in the chemical supply, and these sensors also typically detect only down to about 3% to 5% level. The use of a probe also requires elastomeric seals or metal seals, both of which may leak.
Capacitance level sensors also are subject to interference from outside signals and “noise”, such as that from radio frequency induction (RFI) and electromagnetic induction (EMI), both of which are common in semiconductor fabrication facilities.
Another attempt to enable 100% chemical usage from bulk containers has involved installation of a well in the bottom of the container and placement of a dip tube and level sensor in the well. Such containers are more expensive, are harder to clean, require additional height, and still do not enable 100% usage of the chemical.
The use of optical liquid sensors to detect liquid in teflon tubing is well known in the art of chemical delivery systems. For example, in a system for delivering a liquid chemical for cleaning semiconductor wafers, such as sulfuric acid (H
2
SO
4
), optical liquid sensors may be used for liquid level detection in a pressure vessel and also for liquid flow detection in teflon tubing throughout the system.
Such a delivery system may include a supply of liquid chemical in a drum connected by a teflon tube to a pump for pumping the liquid chemical from the drum through lines and filters to a fabrication facility or other end use. An optical liquid flow sensor on the teflon tube is commonly used to prevent cavitation and/or dry runs that could damage the pump. The optical sensor activates an electronic switch which shuts the pump off when no liquid is flowing in the line, a condition typically indicated first by a breakup in liquid flow when the drum level approaches empty.
Such systems and detection methods are not suitable for delivering high-purity and ultra-high purity chemicals used in integrated circuit manufacturing operations such as CVD to form silicon dioxide films. These types of applications cannot use the teflon tubing/optical sensor method of detecting liquid fluid because of the sensitivity of the high-purity and ultra-high purity
Birtcher Charles Michael
Hamidi Jamshid Jay
Martinez Martin Castaneda
Steidl Thomas Andrew
Air Products and Chemicals Inc.
Chase Geoffrey L.
Kaufman Joseph A.
LandOfFree
Chemical delivery system with ultrasonic fluid sensors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chemical delivery system with ultrasonic fluid sensors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical delivery system with ultrasonic fluid sensors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2467700