Compositions – Water-softening or purifying or scale-inhibiting agents – Plant or organic material containing
Reexamination Certificate
2001-07-16
2004-04-06
Lovering, Richard D. (Department: 1712)
Compositions
Water-softening or purifying or scale-inhibiting agents
Plant or organic material containing
C210S903000, C210S925000, C252S179000, C422S037000, C502S404000, C502S413000
Reexamination Certificate
active
06716366
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the removal of nitrates and ammonia from process water, wastewater streams, livestock wastewater, lagoon water systems, suspended solids sludge, and the like resulting, for example, from processes in mining operations, agriculture facilities operations, and military facilities operations. Of particular interest is the removal of nitrates and ammonia from lagoon water having nitrate and metal ions, such as seen in mining operations. The process to remove nitrates includes the addition of absorbent or absorbent-adsorbent products in a solid form or pellets to the water stream without pH adjustment. The process is without ions containing electropositive metals like aluminum, copper, zinc, or iron alone or in combination with other metals in ions. The removal of these ions from the process eliminates the need to have chlorine or sulfur based acids as well alkali present.
Processing of the water or wastewater stream is done by passage through a canister or tower system having several layers of coagulant-absorbend-adsorbent. The absorbent compositions are based on products consisting of:
(1) a material selected from the group consisting of an organically modified sodium and/or calcium bentonite, siliceous vulco clay (volclay), attapulgite clay, a hydrous silicate of aluminum generated from sodium bentonite or calcium bentonite, cross-linked montmorillonite molecular sieves, porous silicate glass, kaolin surface modified by polycyclopentadient, tricalcium aluminate, calcium silicate hydrate (comprising by formula Ca
6
Si
6
O
17
(OH)
2
) with bulk density of 85-139 g/liter, silica xerogels, high-porosity silica xerogels, materials with a cystalline metal-organic microporous surface, surface altered zeolites, clinoptilolite, and zeolite Analcime (Analcite comprising by formula Na
2
O.Al
2
O
3
.4SiO
2
.2H
2
O);
(2) with a compound selected from the group consisting of an insoluble carbohydrate polymer 24% amylose and 75% amilopectin; a branched-chain structure having sulfide, disulfide sulfonated or sulfate group(s) present; crosslinked starch xanthate; starch xanthate-xanthide mixture (preferably crosslinked by 2-chloro-N,N-diethylacetamide, epichlorohydrin, sodium trimetaphosphate, phosphorous oxychloride, formaldehyde, glyoxal, acrolein, N-methylol urea, or other efficient agents that can give a degree of substitution of from 0.12 to 0.98); dithiocarbonic acid and xanthate; amd
(3) a compound selected from the group of
(a) a sulfur containing compound selected from the group consisting of 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 1,3,5-Triazine-2,4,6-(1H,3H,5H)-trithione, trisodium salt, or
(b) regenerated cellulose (Ground Viscose) modified by NaOH-Diethylaminoethyl chloride hydrochloride crosslinked with EPI(epichlorohydrin) and having an exchange capacity of 0.65-0.95 milliequivalents per gram or
(c) a carbon containing compound selected from activated carbon, anthracite and lignin.
High levels of nitrate in ground water can create a serious health risk. The nitrate outflow onto shallow continental shelves can produce nearshore algae blooms. Techniques such as selective ion exchange, reverse osmosis, distillation, and electrodialysis are limited to the transfer of nitrate between two bodies of water. Only biological processes are presently available for nitrate destruction. These processes are very limited in use due in part to adverse effects of non-constant water temperature as well as the high cost of use in the field.
In the United States and Europe, legislation now specifies a maximum permissible nitrate level in water for drinking or industrial use. Maximum legal nitrate levels in drinking water are 44 mg/liter in United States and 50 mg/liter in Europe. In the United States the nitrate removal is strongly regulated by the EPA in its efforts to reduce this serious threat to the water supply.
The water odor treatment contemplated by this invention is particularly applicable to wastes derived from slaughterhouses, fancy meat departments, and tank houses. The instant method is particularly applicable for reducing odors and contaminants from multi-animal wastewater sources. Current government regulations require that such waste contaminants must be removed from the wastewater, or collected in storage so as to be in compliance with the regulations. The Environmental Protection Agency (EPA) has recently issued very stringent effluent guidelines and standards for hog and poultry industries in particular.
The food processing industries such as the hog industry, poultry industry, slaughter-houses, fish meal factories and bone meal factories typically consume large quantities of water in the various processing segments of their plants, which water is then discharged as wastewater. This water and/or wastewater, contains large quantities of fats and oils, fatty acids, proteinceous material, blood, and other undesirable solids.
The resultant generally foul smelling wastewater has over 1,000 parts per million (ppm) of total ammonia, over 1,000 ppm of total nitrogen, over 100,000 mg./I. Biological Oxygen Demand (BOD), over 200,000 ppm Chemical Oxygen Demand (COD), over 50,000 ppm of Total Suspended Solids (TSS), and over 30,000 ppm of Oil and Grease (O&G). These levels may vary from plant to plant.
Even higher nitrate and metals concentrations are produced in (waste)water streams or lagoons by processes in the mining industry, industrial military operations, and other agricultural industry.
2. Description of the Prior Art
The patent literature suggests different systems for nitrate removal. For example in U.S. Publication No. H1,126, Pan et al. disclose a process comprised of
1—adding Sulfamic acid to the wastewater, in stoichiometric proportion with respect to sodium nitrate and under strict pH control, and
2—settling with filtration to form gaseous nitrogen.
Use of such as system is limited to only a small scale, and can not be used to treat large scale or volume of water such as from mining and agriculture operations or in lagoons which contain millions of gallons of water. This chemical process is totally impractical for treatment of large volumes of water given its complexity that includes the difficulties associated with the large sludge volume generated, strict pH control, precipitation, settling and filtration.
In U.S. Pat. No. 5,069,800, Murphy, discloses a chemical process for the denitrification of water by treating water with a metal sufficiently electropositive to decompose the water contamination while regulating the pH to be in very narrow range, (8-11.5). This adjustment is to a crucial nitrate reduction range (especially above 9.1-9.3 up to 11.5) needed for most efficient reduction of nitrate ion. At pH 6.5 to 8, the water in these processes is not sufficiently alkaline in order to start to dissolve the metal, for instance aluminum particles, and little or no reaction occurs. These processes described are neither economical nor efficient for the treatment of large volumes of water for nitrate removal, and can generate very easily new sources of metal cation pollutants in the water stream. The '126 and '800 patents are incorporated herein by reference.
In addition, the patent literature reveals that a number of systems have been proposed for clarification of industrial waste effluent from various types of animal waste as described in Waldmann's U.S. Pat. No. 6,261,459 and incorporated in its entirety by reference.
One aspect of the invention is that the organophilic clays employed include (among others) primary, secondary, tertiary, and quaternary substituted ammonium salts of montmorillonite, hectorite, attapulgite, sepiolite, and semecite in which the substituted ammonium cation or phosphonium cation contains at least one carbon chain of 12 or more carbon atoms in length. These organically modified clays are used in general as thickener agents. The chemically modified clay of the present invention is described in Waldmann's U.S. Pa
Angres Isaac A.
Lovering Richard D.
Maxichem Inc.
LandOfFree
Chemical composition for treatment of nitrate and odors from... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chemical composition for treatment of nitrate and odors from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical composition for treatment of nitrate and odors from... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3249435