Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making
Reexamination Certificate
2001-01-11
2003-06-24
Ashton, Rosemary (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Imaging affecting physical property of radiation sensitive...
Radiation sensitive composition or product or process of making
Reexamination Certificate
active
06582878
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a resist composition and, more particularly, to a novel chemical amplification resist composition for forming fine or very fine resist patterns in a lithographic process. The present invention also relates to a process for the formation of such resist patterns. The resist composition and patterning process according to the present invention can be advantageously utilized in the production of semiconductor devices such as semiconductor integrated circuits, for example, LSIs, VLSIs, ULSIs and other devices, using a lithographic process.
2. Description of the Related Art
Recently, in the production of semiconductor integrated circuits, the degree of integration thereof has been notably increased and accordingly LSIs and VLSIs have been produced on a commercial scale. The minimum line width of the circuit patterns in these devices approaches the sub-half micron or quarter micron order. In other words, in the production of these high performance devices, it is required to provide a resist material which are able to form fine or very fine resist patterns.
Further, in the production of semiconductor devices, to increase a throughput capacity thereof, it is also required to increase a sensitivity of the resist material designed for fine patterning, thereby shortening the exposure time to the patterning radiation. To satisfy these requirements, there has been recently invented a chemical amplification resist material which, as is well-known in the field, comprises a photoacid generator, i.e., photoactive acid-generating compound, in addition to a base resin. Upon exposure of the resist material to patterning radiation, the photoacid generator can release an acid which can then catalytically act on the base resin, thereby ensuring a highly increased sensitivity of the resist material.
The conventional chemical amplification resist material or composition which is considered to be relevant to the present invention comprises, in combination, an alkali-soluble base resin, a dissolution inhibitor or dissolution inhibiting agent (hereinafter, briefly referred to as “SIA”) which can make the resist composition alkali-insoluble, and a photoacid generator (hereinafter, briefly referred to as “PAG”). In this resist composition, an acid is generated or released from the photoacid generator as a result of patterning exposure in the initial step of the lithographic process, and the dissolution inhibitor is decomposed by the produced acid. As a result of the decomposition, the dissolution inhibitor loses its dissolution inhibiting function, thus the resist composition can exhibit good alkali-solubility depending upon the alkali-solubility of the base resin used.
The change of the solubility in alkali of the chemical amplification resist composition will be further described with reference to
FIG. 1
which illustrates an acidic catalytic reaction in the chemical amplification resist composition. As illustrated, an alkali-soluble base resin (not shown), a dissolution inhibitor (SIA) containing a dissolution inhibiting group (SIG) in a molecule thereof and a photoacid generator (PAG) are mixedly contained in the resist composition as a coating. At this stage, the resist composition is insoluble in an alkaline solution.
Then, in the exposure step, the resist composition is exposed to a patterning radiation. As a result, an acid is generated or released from the photoacid generator. The acid thus produced can act against the dissolution inhibitor, thereby cleaving the dissolution inhibiting group from a molecule of the dissolution inhibitor. Since the dissolution inhibitor loses its inherent function of maintaining the alkali-insolubility of the resist composition, the exposed resist composition can change its solubility in an alkaline solution from insoluble to soluble. Accordingly, when it is developed with an aqueous alkaline solution, the exposed resist composition can provide positive resist patterns. Alternatively, if it is developed with an organic solvent having a low polarity, the exposed resist composition can provide negative resist patterns.
In the chemical amplification resist composition containing the above-mentioned components, it becomes possible to increase a sensitivity of the resist composition, because the acid released from the photoacid generator can act as a catalyst against other components in the composition, and can result in many reactions therebetween.
In addition to the improvement of the sensitivity, it is also necessary to improve the resolution of the chemical amplification resist composition, and such an improvement of the resolution largely relies upon the properties of the dissolution inhibitor which is also contained in the resist composition. Especially, in order to increase a contrast in the dissolution speed and thus attain an increased resolution in the resist composition, the dissolution inhibitor used should completely inhibit dissolution of the resist composition in an alkali prior to patterning exposure, however, after completion of the exposure, the dissolution inhibitor has to be decomposed so that the dissolution of the resist composition in the alkali can be accelerated in the absence of said dissolution inhibitor.
At present, no dissolution inhibitor capable of exhibiting both a high dissolution inhibiting function (before exposure) and a high dissolution accelerating function (after exposure), thereby ensuring a sufficient exposure contrast, is known. The well-known dissolution inhibitors have a drawback in that, before exposure, they cannot exhibit a sufficiently high capability of inhibiting dissolution of the resist composition in the alkali. For example, O'Brien et al. SPIE, Vol. 920
, Advances in Resist Technology and Processina V
(1988), pp. 42-50, teaches use of a dissolution inhibitor such as naphthalene-2-carboxylate, t-butoxycarbonyloxy naphthalene and others, however, these dissolution inhibitors cannot provide a good contrast of the dissolution speed before and after exposure because of its poor dissolution inhibiting action (before exposure). As a result, the resist material containing the described dissolution inhibitors can provide only insufficient resolution in the resulting resist patterns.
There are other approaches to improve the dissolution inhibitors used in the resist composition. For example, McKean et al., SPIE, Vol. 920
, Advances in Resist Technology and Processing V
(1988), pp. 60-66, teaches introduction of bisphenol or others in a matrix portion of the dissolution inhibitor compound. Further, there has been taught the introduction of a new dissolution inhibiting group into a molecule of the dissolution inhibitor, i.e., the use of the dissolution inhibiting group capable of being decomposed with an acid, thus accelerating dissolution of the resist composition in an alkali, such as tetrahydrofuran and others. However, these improved dissolution inhibitors are still insufficient to provide a satisfactory contrast in dissolution speed and, accordingly, a satisfactory resolution, namely, they suffer from the same problems as in the above-discussed well-known dissolution inhibitors.
In addition, it has been noted in the chemical amplification resist composition that its resolution can vary widely depending upon a diffusion distance of acid generated in the resist coating and a reaction distance of the caused chain reaction, i.e., the distance from an initial point at which the acidic catalytic reaction was started to an end point at which the reaction ceases. Immediately after exposure, no diffusion of acid is observed in the resist composition, however, the generated acid can gradually diffuse in the resist composition depending upon factors such as lapse of time and postexposure baking (hereinafter, briefly referred to as “PEB”) for proceeding the acidic catalytic reaction, namely, the diffusion distance of the acid can gradually increase after exposure. Similarly, the reaction distance of the chain reaction can increase with the prog
Igarashi Miwa
Kuramitsu Yoko
Namiki Takahisa
Nozaki Koji
Watanabe Keiji
Armstrong Westerman & Hattori, LLP
Ashton Rosemary
Fujitsu Limited
LandOfFree
Chemical amplification resist compositions and process for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chemical amplification resist compositions and process for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical amplification resist compositions and process for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3157026