Charging system for mobile robot, method for searching...

Amusement devices: toys – Having light-or sound-responsive switch or control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C446S484000, C446S454000, C318S587000, C180S169000

Reexamination Certificate

active

06764373

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a mobile robot which generally or partly imitates living mechanisms of human beings or animals and, particularly, to a mobile robot which bipedally or quadrupedally freely walks or crawls (in a trackless manner) within a work area or space.
The present invention also relates to a mobile robot that is driven by a rechargeable battery with no umbilical power cable connected, and freely and tracklessly moves within a work space, and to a charging mechanism for charging a battery in the mobile robot. More particularly, the present invention relates to a mobile robot of the type which stops at a charging station for automatic recharging when power remaining in the battery drops during self-controlled operation, and which departs from the charging station to resume normal operation at the end of the charging, and to a charging mechanism for charging the battery in the mobile robot.
2. Description of the Related Art
The term robot is said to be derived from Slavic word Robota (slave machine). In Japan, robots started to be widely used from the 1960s, and most of the robots were then industrial robots such as multiarticulate robot arms (manipulators) and conveyance robots for automating a production line in a plant or for use in an unmanned plant.
Research and development have advanced in moving (ambulatory) robots that use feet in walking and stable walk control for the mobile robots, such as pet-type or toy robots which imitate the living mechanisms and the behavior of four-footed animals such as the dog and the cat, and human-type robots which imitate the living mechanism and the behavior of human beings or apes. Expectations of commercializing these robots are currently mounting. The ambulatory robot is unstable and presents more difficulty in posture control and ambulation control than crawling robots. However, the ambulatory robot is excellent in that the ambulatory robot is flexible in walking and running, for instance, going up and down the stairs, and striding over an obstacle.
An installed robot, such as a robot arm, which is firmly planted at a particular location, is used for the assembling and selection of parts in a limited and local work space only. In contrast, the work space of the mobile robot is not limited. The mobile robot moves along a track or freely on a non-tracked area, performing any predetermined job. The mobile robot thus provides various services, instead of the human beings, the dogs, and other living things.
Humanoid robots coexist under the living environments of human beings, and perform a diversity of simple, risky and difficult jobs involved in the industrial and production activity of the human beings. For instance, the humanoid robots are expected to play an important role in various activities, such as maintenance work in nuclear power plants, thermoelectric power plants, and petrochemical plants, conveyance and assembly operation of parts in production plants, cleaning operations on high-rise buildings, and rescue activities in the site of a fire. The humanoid robot moves around or over an obstacle using the two feet thereof, reaching the site of activity in a self-controlled way, and performs a job exactly as instructed.
The mobile robots for entertainment imitating the dog or the cat, namely toy robots, have the feature of living together in a close relationship, rather than assisting the human beings in difficult jobs. The toy robots are easy to handle, compared with real animals, and offers sophisticated functions, compared with conventional toys.
Conventional toy machines offer fixed interactive relationship with a user operation, and cannot be modified according to the user's preference. As a result, the user may grow tired of the toy that simply repeats the same operation. In contrast, although the toy robot performs the operation in accordance with time-series action model, the toy robot modifies the time-series action model in response to an external stimulation such as a user operation. Specifically, by imparting a “learning effect” to the toy robot, the user enjoys preferable action patterns of which the user is free from being tired.
The toy robot may be programmed to dynamically respond to the user action as an owner, for instance, “praising”, “playing with”, “petting”, “stroking”, “chastising”, or “beating”. For instance, the toy robot may respond by “being pleased”, “fawning on”, “pouting”, “chastising”, “barking”, or “wagging”. The user thus enjoys an education simulation of the toy robot. The toy robot bipedally or quadrupedally walks within a room at home as a non-tracked work space, moving around or over an obstacle, freely and automatically in a self-controlled manner.
The above-discussed robots are motorized mechanical devices, thereby needing power feeding thereto.
Electric power is supplied from a utility AC supply through a power cable to a robot fixed at a particular location, such as the already-discussed robot arm, or to a robot that moves within a limited radius of action or along a limited action pattern.
It is impossible to feed power to the mobile robot moving around in a self-controlled fashion from the utility AC power supply, because the power cable limits the radius of action of the mobile robot. Self-propelled driving using a battery is a logical choice for the mobile robot. The battery-driven mobile robot runs in a diversity of work spaces, such as a living area of human beings, without any physical limitation such as the location of a wall outlet or the length of power cable.
The battery-driven robot needs battery charging, however. Although the mobile robot is used as an automatic device, a charging operation is an issue that needs to be addressed to construct a fully automatic device. The battery replacement for charging or the connection of a power connector are troublesome to the user.
A “charging station” has been introduced to perform the battery charging of the mobile robot in a reliable and fully automatic fashion. The charging station provides space dedicated to the battery charging of the mobile robot.
When the robot detects a drop in the power remaining in the battery during the self-propelled and self-controlled operation, the robot suspends the operation thereof, and automatically returns to and stops at the charging station. The charging station establishes electrical connection between the robot and the a power supply thereof, thereby supplying power to the battery of the robot. When the battery is fully charged or recovers the power thereof to a predetermined level, the electrical connection to the power supply is disconnected. The mobile robot departs from the charging station, and resumes the operation thereof that was once suspended.
With a plurality of charging stations arranged within a work space, the mobile robot receives power supplying from the charging station closest thereto. The mobile robot thus moves from station to station for charging, thereby expanding the radius of action thereof. On the other hand, one single charging station may be shared by a plurality of mobile robots. The charging function of the robot may partly be transferred to the charging station, and the required specifications of the robot itself may be made less severe, and the weight and cost of the mobile robot are reduced.
To smoothly and automatically put the mobile robot into a charging operation with the charging station in the middle of a job, the mobile robot needs to be guided into the charging station (or the mobile robot searches for the location of the charging station), while detecting the position thereof and controlling itself for accurate and reliable electrical connection with the power supply.
The mobile robot may be relatively easily set into the charging station if the robot (such as a conveyance robot) moves only along a predetermined fixed track. The charging station is arranged in the midway of the normal track, and the mobile robot comes to the charging station in one of the predefined steps, and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Charging system for mobile robot, method for searching... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Charging system for mobile robot, method for searching..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Charging system for mobile robot, method for searching... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3223227

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.