Charged particle device

Radiant energy – Inspection of solids or liquids by charged particles – Electron probe type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S307000, C250S397000

Reexamination Certificate

active

06730907

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a charged particle device. In particular, this invention relates to a device and method for the examination of specimen with a beam of charged particles.
BACKGROUND OF THE INVENTION
Beams of negatively or positively charged particles can be used for the examination of specimen. Compared to optical light, the resolving power of a beam of charged particles is several magnitudes higher and allows for the examination of much finer details. Accordingly, charged particle beams, especially electron beams, are used in a variety of ways in biology, medicine, the materials sciences, and lithography. Examples include the diagnosis of human, animal, and plant diseases, visualisation of sub cellular components and structures such as DNA, determination of the structure of composite materials, thin films, and ceramics, or the inspection of masks and wafers used in semiconductor technology.
The two basic types of charged particle devices for the examination of specimen, that are in widespread use today, are the transmission electron microscope (TEM) and the scanning electron microscope (SEM). In addition to the normal use the two microscopes, both the TEM and SEM have been modified, resulting in instruments designed to perform specific functions. For example, the scanning transmission electron microscope (STEM) produces a transmitted image, as a TEM does, but uses a scanning beam, as the SEM does.
In conventional charged particle devices like, for example, a scanning electron microscopes (SEM) the designer always had to make a compromise between the arrangement of the objective lens for focusing the particle beam onto the specimen and the arrangement of the detector, because it is preferable to arrange both the objective lens and the detector as close as possible to the specimen in order to get the best results. However, due the fact that detectors can not be minimised beyond a certain degree, there is just not enough space for the detector in the vicinity of the specimen without negatively affecting the focusing properties of the objective lens.
Furthermore, despite their widespread use, electron microscopes are large and fairly complicated instruments, which in many universities and industrial settings have often become centralised. Electron microscope technicians have specialised training to carry out the day-to-day operations of the laboratory. However, the maintenance of the instrument and especially the adaptation of the instrument to specific measurement needs, for example by use of different spectrometers and detectors, often leads to costly downtimes of the instruments affecting a large number of users.
These problems have been partially addressed in the prior art, e.g., U.S. Pat. No. 5,422,486 which discloses a particle mirror used inside an electron microscope. However, there is a need for additional improvement.
SUMMARY OF THE INVENTION
In view of the foregoing, an object of the present invention is to provide an improved charged particle device that exhibits an improved design and that can be more easily adapted for various measurement needs. Another object of the present invention is to provide a particle mirror for use in a charged particle device. Still another object of the present invention is to provide an improved method for the examination of specimen with a beam of charged particles.
According to one aspect of the present invention, there is provided a charged particle device as specified in independent claim 1. According to a further aspect of the present invention there is provided a particle mirror for use in a charged particle device as specified in independent claim 14. According to a still further aspect of the present invention there is provided a method for the examination of specimen with a beam of charged particles as specified in independent claim 19. According to a still further aspect of the present invention there is provided a charged particle device as specified in independent claim 20. Further advantages, features, aspects and details of the invention are evident from the dependent claims, the description and the accompanying drawings. The claims are intended to be understood as a first non-limiting approach of defining the invention in general terms.
According to the first aspect of the present invention, there is provided a charged particle device comprising: a particle source for providing a charged particle beam; an objective lens for focusing the particle beam onto a specimen, said objective lens having an optical axis; a particle mirror located on the optical axis of the objective lens, said particle mirror having a front surface, a back surface, a drift region reaching from the back surface to die front surface for letting the charged particle beam pass from the back surface to the front surface, said drift region being positioned away from the optical axis, and a deflecting region located on the front surface for deflecting charged particles coming from the specimen towards a detector.
The improved charged particle device has the advantage that the use of a particle mirror results in additional freedom for the design of the charged particle device. A particle mirror, contrary to a particle detector, can be arranged in the device more easily without negatively affecting the focusing/projecting properties of the objective lens. By having the drift region, the particle mirror can be integrated in the device more easily, without negatively affecting charged particle beam. Due to the fact that the drift region is positioned away from the axis of the objective lens, the area, where the axis intersects the mirror, can be used as deflecting region, which increases the quality of the examination considerably, because the particles moving along the axis carry an important part of the information about the specimen.
Furthermore, since there is now no limitation on the size of the detector, all kinds of detectors and spectrometers can be used to analyse the specimen. In addition to that, one type of detector can be easily replaced by another type of detector, in order to adapt the device to specific measurement needs.
According to a preferred embodiment, the particle mirror comprises a deflecting region located on the front surface for deflecting all particles in a given velocity range (energy range) and in a given angular range, so that the angle &bgr;
o
between the outgoing path of the particle and the axes normal to the front surface of the mirror, at the point where the particle hits the mirror, equals the angle &agr;&bgr;
i
between the incoming path of the particle and the axes normal to the front surface of the mirror. Due to the fact that the energy and the angular distribution of the particles coming from the specimen is preserved by the mirror, the detector is capable of basically recording the same information as if it were directly located near the specimen.
According to a preferred embodiment, the drift region of the particle mirror reaching from the back surface to the front surface is positioned away from the center of the mirror. The particle mirror is preferably arranged in such a manner, that most of the particles coming from the specimen are deflected towards the detector. This implies that the geometric center of the mirror is preferably located where the particles coming from the specimen are concentrated.
According to a preferred embodiment, the charged particle device further comprises a deflection unit for directing the charged particle beam essentially along the optical axis of the objective lens, said deflection unit being arranged between the particle mirror and the objective lens. In this arrangement basically all particles coming from the specimen and moving along the optical axis can be deflected to the detector. Obviously, the deflecting unit affects the charged particle beam moving towards the specimen as well as the charged particles coming from the specimen. However, these two types of particles are affected in different manner, which leads to a separation of the two types of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Charged particle device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Charged particle device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Charged particle device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3256688

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.