Cellulose fiber reinforced composites having reduced...

Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Rod – strand – filament or fiber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S292100, C428S297400, C428S300100, C428S364000, C428S375000, C428S378000, C428S392000, C428S394000

Reexamination Certificate

active

06743507

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to composite materials containing cellulosic pulp fibers dispersed in a polymeric matrix. The invention also relates to methods by which to produce such composites and molded articles therefrom.
BACKGROUND OF THE INVENTION
Composites are widely used in a broad spectrum of applications, including automotive parts, sporting goods, computer chips, and the like. Composites are generally defined as a macroscale combination of two or more solid components that are insoluble in each other and which further differ in chemical nature. More particularly, composites typically include at least one reinforcing component enveloped in a matrix composition. The reinforcement generally bears the load to which the composite is subjected, while the matrix transfers the load between the reinforcing elements. An interface is formed between the reinforcement and the matrix. It is the adhesion between the two constituents at this interface which determines the mechanical properties of the composite as a whole. In fact, adhesion is responsible for the generally synergistic nature of composites. For example, the adhesion developed within composites can provide mechanical properties that are generally superior to the mechanical properties of the individual elements, either alone or in combination. In addition to mechanical properties, composites possessing adequate adhesional characteristics can also provide other physical properties, such as conductivity, notched impact resistance, and the like, which are superior to the sum of the properties of the individual components. A number of factors impact the adhesion developed within composites, including the dispersion of the reinforcement component within the matrix and the level of compatibility between the reinforcement and the various components which make up the matrix compositions. Coatings may be applied to the reinforcement to promote adhesion, such as the acrylate graft copolymers described in U.S. Pat. No. 4,131,577. However, there nevertheless remains in the art a need for composites exhibiting improved adhesion. There further remains a need in the art for composites having other improved propeties, such as color and the like. A variety of polymers, both thermoset and thermoplastic, commonly serve as the basis for the matrix composition. Thermoplastic polymers are particularly attractive for use in matrices, due to their ease of processability. Well known thermoplastic matrix materials include polyamides, such as nylons, polyesters, and polyolefins, particularly polypropylene. Polypropylene is a particularly attractive matrix material for applications requiring performance at low to moderate temperatures because it is relatively inexpensive and light weight, yet provides adequate physical properties. Consequently, polypropylene is regularly used as the matrix polymer in automotive composites, such as injection molded interior parts and the like.
Numerous fibrous materials are similarly known for use as reinforcements in composites. Glass fibers are particularly widely used as the reinforcing component for composites, imparting increased mechanical strength, dimensional stability, and heat resistance to the final composite. However, although glass fibers achieve desirable reinforcing properties, they are fairly costly, abrade processing equipment and increase the overall density of the composite. In certain applications, these disadvantages outweigh the advantages of using glass fibers as a reinforcement component.
Cellulosic materials have been evaluated as fibrous reinforcements for composites in the past. Klason, et al., “Cellulosic Fillers for Thermoplastics”, Polymer Composites, (1986); Klason, et al., “The Efficiency of Cellulosic Fillers in Common Thermoplastics. Part 1. Filling without processing aids or coupling agents”, Intern. J. Polymeric Mater., Volume 10, pgs. 159-187 (1984); Snijder, et al., “Polyolefins and Engineering Plastics Reinforced with Annual Plant Fibers”, The Fourth International Conference on Wood Fiber-Plastic Composites, pg. 181-191.
Cellulosic materials are especially attractive for use in composites because they have relatively low densities. For example, cellulose fibers have a density of approximately 1500 kg/m
3
in comparison to a density of 2500 kg/m
3
for E grade glass fibers. Such weight savings can be highly advantageous, particularly in automotive applications. In addition to the reduction in weight, cellulosic fibers are not abrasive to processing equipment in comparison to glass fibers or high density mineral fibers, e.g. wollastonite.
However, prior investigations into the use of cellulosic materials, e.g. cellulose pulps or raw lignocellulosic resources (e.g., wood flour, bagasse), in polymeric materials found that a pronounced discoloration of the composite material occurred if the cellulose materials were processed at elevated temperatures, such as the temperatures commonly employed when melt blending the reinforcement and matrix. Furthermore, cellulosic materials were found to cause significant off-gasing and objectionable odors. These disadvantageous results directed previous research efforts to the use of cellulosic materials in matrix polymers having more moderate melting temperatures, such as melting temperatures of below 200° C. Further, the use of cellulosic fibers having higher alpha-cellulose contents has been proposed in conjunction with higher melting matrix polymers, as discussed in U.S. Pat. No. 6,270,883 hereby incorporated by reference in its entirety.
However, despite such research efforts, discoloration continues to be problematic in conventional cellulosic material-reinforced composites prepared from matrices having even moderate melting temperatures. For example, an undesirable brownish discoloration is observed in conventional composites formed from cellulose fibers dispersed in a polyolefinic matrix. As noted above, this brownish discoloration is generally associated with the degradation of the cellulose fibers during processing and often gives rise to malodors during product usage. Further, an unacceptable level of fiber agglomeration has been observed in conventional cellulosic fiber/polyolefin composites to date. As noted previously, such agglomeration would be expected to be detrimental to the interfacial adhesion characteristics of the composite, thus negatively impacting mechanical properties and the like. Further, agglomeration of the cellulosic fibers can give rise to surface roughness and non-uniform properties. Consequently, a need exists in the art for cellulose-reinforced composites having improved color and dispersion properties.
BRIEF SUMMARY OF THE INVENTION
The present invention provides improved cellulosic fiber reinforced composites and methods by which to form such composites. More specifically, the present invention provides cellulosic fiber reinforced composites having a beneficial balance of matrix components selected to impart improved color and fiber dispersion characteristics to the resulting composite. The present invention further provides methods by which to produce cellulosic fiber reinforced composites having superior color and fiber dispersion in comparison to known cellulosic material reinforced composites.
The cellulosic fiber reinforced composites of the present invention further provide improved structural characteristics to the matrix material at a reduced cost in comparison to conventional glass fibers and with a much lower increase in the density of the resulting composite. The cellulosic pulp fibers employed in the composites of the invention also do not significantly abrade the processing equipment or generate malodors during composite manufacture. Additionally, the use of the cellulosic pulp materials according to the invention allows for the blending of the components and molding of the resultant composite material at lower processing temperatures.
In one advantageous embodiment, cellulose reinforced composites are provided that are prepared from a melt blending composition that includes: cel

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cellulose fiber reinforced composites having reduced... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cellulose fiber reinforced composites having reduced..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cellulose fiber reinforced composites having reduced... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3323571

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.