Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification – Introduction of a polynucleotide molecule into or...
Reexamination Certificate
1999-01-11
2002-05-07
Nguyen, Dave Trong (Department: 1633)
Chemistry: molecular biology and microbiology
Process of mutation, cell fusion, or genetic modification
Introduction of a polynucleotide molecule into or...
C435S320100, C424S450000, C514S04400A
Reexamination Certificate
active
06383814
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to novel cationic amphiphilic compounds that facilitate the intracellular delivery of biologically active (therapeutic) molecules. The present invention relates also to pharmaceutical compositions that comprise such cationic amphiphiles, and that are useful to deliver into the cells of patients therapeutically effective amounts of biologically active molecules. The novel cationic amphiphilic compounds of the invention are particularly useful in relation to gene therapy.
Effective therapeutic use of many types of biologically active molecules has not been achieved simply because methods are not available to cause delivery of therapeutically effective amounts of such substances into the particular cells of a patient for which treatment therewith would provide therapeutic benefit. Efficient delivery of therapeutically sufficient amounts of such molecules into cells has often proved difficult, if not impossible, since, for example, the cell membrane presents a selectively-permeable barrier. Additionally, even when biologically active molecules successfully enter targeted cells, they may be degraded directly in the cell cytoplasm or even transported to structures in the the cell, such as lysosomal compartments, specialized for degradative processes. Thus both the nature of substances that are allowed to enter cells, and the amounts thereof that ultimately arrive at targeted locations within cells, at which they can provide therapeutic benefit, are strictly limited.
Although such selectivity is generally necessary in order that proper cell function can be maintained, it comes with the disadvantage that many therapeutically valuable substances (or therapeutically effective amounts thereof) are excluded. Additionally, the complex structure, behavior, and environment presented by an intact tissue that is targeted for intracellular delivery of biologically active molecules often interfere substantially with such delivery, in comparison with the case presented by populations of cells cultured in vitro.
Examples of biologically active molecules for which effective targeting to a patients' tissues is often not achieved: (1) numerous proteins induding immunoglobin proteins, (2) polynucleotides such as genomic DNA, cDNA, or mRNA (3) antisense polynucleotides; and (4) many low molecular weight compounds, whether synthetic or naturally occurring, such as the peptide hormones and antibiotics.
One of the fundamental challenges now facing medical practicioners is that although the defective genes that are associated with numerous inherited diseases (or that represent disease risk factors including for various cancers) have been isolated and characterized, methods to correct the disease states themselves by providing patients with normal copies of such genes (the technique of gene therapy) are substantially lacking. Accordingly, the development of improved methods of intracellular delivery therefor is of great medical importance.
Examples of diseases that it is hoped can be treated by gene therapy include inherited disorders such as cystic fibrosis, Gaucher's disease, Fabry's disease, and muscular dystrophy. Representative of acquired disorders that can be treated are: (1) for cancers—multiple myeloma, leukemias, melanomas, ovarian carcinoma and small cell lung cancer; (2) for cardiovascular conditions—progressive heart failure, restenosis, and hemophilias; and (3) for neurological conditions—traumatic brain injury.
Gene therapy requires successful transfection of target cells in a patient. Transfection may generally be defined as the process of introducing an expressible polynudleotide (for example a gene, a CDNA, or an mRNA patterned thereon) into a cell. Successful expression of the encoding polynucleotide leads to production in the cells of a normal protein and leads to correction of the disease state associated with the abnormal gene. Therapies based on providing such proteins directly to target cells (protein replacement therapy) are often ineffective for the reasons mentioned above.
Cystic fibrosis, a common lethal genetic disorder, is a particular example of a disease that is a target for gene therapy. The disease is caused by the presence of one or more mutations in the gene that encodes a protein known as cystic fibrosis transmembrane conductance regulator (“CFTR”), and which regulates the movement of ions (and therefore fluid) across the cell membrane of epithelial cells, induding lung epithelial cells. Abnormal ion transport in airway cells leads to abnormal mucous secretion, inflammation and infection, tissue damage, and eventually death.
It is widely hoped that gene therapy will provide a long lasting and predictable form of therapy for certain disease states, and it is likely the only form of therapy suitable for many inhereted diseases. There remains however a critical need to develop compounds that faciliate entry of functional genes into cells, and whose activity in this regard is sufficient to provide for in vivo delivery of genes or other such biologically active therapeutic molecules in concentrations thereof that are sufficient for intracellular therapeutic effect.
Reported Developments
In as much as compounds designed to facilitate intracellular delivery of biologically active molecules must interact with both non-polar and polar environments (in or on, for example, the plasma membrane, tissue fluids, compartments within the cell, and the biologically active molecule itself), such compounds are designed typically to contain both polar and non-polar domains. Compounds having both such domains may be termed amphiphiles, and many lipids and synthetic lipids that have been disclosed for use in facilitating such intracellular delivery (whether for in vitro or in vivo application) meet this definition. One particularly important class of such amphiphiles is the cationic amphiphiles. In general, cationic amphiphiles have polar groups that are capable of being positively charged at or around physiological pH, and this property is understood in the art to be important in defining how the amphiphiles interact with the many types of biologically active (therapeutic) molecules including, for example, negatively charged polynucleotides such as DNA.
Examples of cationic amphiphilic compounds that have both polar and non-polar domains and that are stated to be useful in relation to intracellular delivery of biologically active molecules are found, for example, in the following references, which contain also useful discussion of (1) the properties of such compounds that are understood in the art as making them suitable for such applications, and (2) the nature of structures, as understood in the art, that are formed by complexing of such amphiphiles with therapeutic molecules intended for intracellular delivery.
(1) Felgner, et al.,
Proc. Natl. Acad. Sci. USA
, 84,7413-7417 (1987) disclose use of positively-charged synthetic cationic lipids including N-[1(2,3-dioleyloxy)propyl]-N,N,N-trimetylammonium chloride (“DOTMA”), to form lipid/DNA complexes suitable for transfections. See also Felgner et al.,
The Journal of Biological Chemisty
, 269(4), 2550-2561 (1994).
(2) Behr et al.,
Proc. Natl. Acad. Sci. USA
, 86,6982-6986 (1989) disclose numerous amphiphiles including dioctadecylamidologlycylspermine (“DOGS”).
(3) U.S. Pat. No. 5,283,185 to Epand et al. describes additional classes and species of amphiphiles including 3&bgr; [N-(N
1
,N
1
-dimethylaminoethane)-carbamoyl] cholesterol, termed “DC-chol”.
(4) Additional compounds that facilitate transport of biologically active molecules into cells are disclosed in U.S. Pat. No. 5,264,618 to Felgner et al. See also Felgner et al.,
The Journal Of Biological Chemistry
, 269(4), pp. 2550-2561 (1994) for disclosure therein of further compounds including “DMRIE” 1,2-dimyristyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide, which is discussed below.
(5) Reference to amphiphiles suitable for intracellular delivery of biologically active molecules is also
Cheng Seng H.
Eastman Simon J.
Harris David J.
Hubbard Shirley C.
Lane Mathieu B.
Finnegan Henderson Farabow Garrett and Dunner, LLP
Genzyme Corporation
Nguyen Dave Trong
LandOfFree
Cationic amphiphiles for intracellular delivery of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cationic amphiphiles for intracellular delivery of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cationic amphiphiles for intracellular delivery of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2824951