Catalysts with low concentration of weak acid sites

Catalyst – solid sorbent – or support therefor: product or process – Zeolite or clay – including gallium analogs – Zsm type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S060000, C502S064000, C502S071000

Reexamination Certificate

active

06268305

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to an aromatic alkylation process and catalyst involving vapor phase alkylation of an aromatic substrate over an improved silicalite aromatic alkylation catalyst. The improved catalyst and method provide alkylation products with decreased impurities and undesirable side reaction products.
Aromatic conversion processes which are carried out over molecular sieve reactions include the alkylation of aromatic substrates such as benzene to produce alkl aromatics such as ethylbenzene, ethyltoluene, cumene or higher aromatics and the transalkylation of polyalkyl benzenes to monoalkyl benzenes. Typically, an alkylation reactor which produces a mixture of mono-and poly-alkyl benzenes may be coupled through various separation stages to a downstream transalkylation reactor. Such alkylation and transalkylation conversion processes can be carried out in the liquid phase, in the vapor phase or under conditions in which both liquid and vapor phases are present.
In efforts to improve commercial alkylation operations, emphasis is placed not only on the conversion efficiency of the catalyst but also on the byproducts that are generated. For example, in the manufacture of ethylbenzene, ethylene and benzene are introduced into an alkylation reactor in the presence of various catalysts. Some of the measure byproducts include diethylbenzene, xylene, propylbenzene, cumene, butylbenzene and other components referred to collectively as heavies. These byproducts have a negative effect on the purification of the desired product. Additionally, even when separated, these byproducts have to be removed from the system. Proper disposal adds to the cost of the intended product.
An example of vapor phase alkylation is found in U.S. Pat. No. 4,107,224 to Dwyer. Here, vapor phase ethylation of benzene over a zeolite catalyst is accomplished in a down flow reactor having four series-connected catalyst beds. The output from the reactor is passed to a separation system in which ethylbenzene product is recovered, with the recycle of polyethylbenzenes to the alkylation reactor where they undergo transalkylation reactions with benzene. The Dwyer catalysts include ZSM-5, ZSM-11,ZSM-12, ZSM-35, ZSM-38, and similar materials.
The molecular sieve silicalite is a well-known alkylation catalyst. For example, U.S. Pat. No. 4,520,270 to Watson et al. discloses the use of silicalite catalysts having an average crystal size of less than 8 microns and a silica/alumina ratio of at least about 200 in the ethylation of an aromatic substrate such as benzene or toluene to produce ethylbenzene of ethyltoluene, respectively. As disclosed in Watson et al., the alkylation procedure can be carried out in a multi-bed alkylation reactor at temperatures ranging from about 350°-475° C., with or without a stream co-feed. The reactor conditions in Watson et al. are such as to provide generally for vapor phase alkylation conditions.
Another procedure employing silicalite and involving the ethylation of benzene under vapor phase reaction conditions coupled with the recycled of polyethylbenzene containing products back to the alkylation reactor is disclosed in U.S. Pat. No. 4,922,053 to Waguespack. Here, alkylation is carried out at temperatures generally in the range of 370° C. to about 470° C. and pressures ranging from atmospheric up to about 25 atmospheres over a catalyst such as silicalite of ZSM-5. The catalysts are described as being moisture sensitive and care is taken to prevent the presence of moisture in the reaction zone. The alkylation/transalkylation reactor comprises four series-connected catalyst beds. Benzene and ethylene are introduced unto the top of the reactor to the first catalyst bed coupled by recycle of a polyethylbenzene fraction to the top of the first catalyst bed as well as the interstage injection of polyethylbenzene and benzene at different points in the reactor.
Another process involving the use of a silicalite as an alkylation catalyst involves the alkylation of an alkylbenzene substrate in order to produce dislkylbenzene of a suppressed ortho isomer content. Thus, as disclosed in U.S. Pat. No. 4,489,214 to Butler et al., silicalite is employed as a catalyst in the alkylation of a monoalkylated substrate, toluene or ethylbenzene, in order to produce the corresponding dialkylbenzene, such as ethyl toluene or diethylbenzene. Specially disclosed in Butler et al. is the ethylation of toluene to produce ethyltoluene under vapor phase conditions at temperatures ranging from 350°-500° C. As disclosed in Butler, the presence of ortho ethyltoluene in the reaction product is substantially less than the thermodynamic equilibrium amount at the vapor phase reaction conditions employed.
U.S. Pat. No. 4,185,040 to Ward et al. discloses an alkylation process employing a molecular sieve catalyst of low sodium content which is said to be especially useful in the production of ethylbenzene from benzene and ethylene and cumene from benzene and propylene. The Na
2
O content of the zeolite should be less the 0.5wt. %. Examples to suitable zeolites include molecular sieves of the X, Y, L, B, ZSM-5, and omega crystal types, with steam stabilized hydrogen Y zeolite being preferred. Specifically disclosed is a steam stabilized ammonium Y zeolite containing about 0.2% Na
2
O. Various catalyst shapes are disclosed in the Ward et al. patent. While cylindrical extrudates maybe employed, a particularly preferred catalyst shape is a so-called “trilobal” which is configured as something in the nature of a three leaf clover. The surface area/volume ratio of the extrudate should be within the range of 85−160 in.
-1
. The alkylation process may be carried out with either upward or downward flow, the latter being preferred, and preferably under temperature and pressure conditions so that at least some liquid phase is present, at least until substantially all of the olefin alkylating agent is consumed. Ward et al. states that rapid catalyst deactivating occurs under most alkylating conditions when no liquid phase is present.
U.S. Pat. No. 4,169,111 to Wight discloses an alkylation/transalkylation process for the manufacture of ethylbenzene employing crystalline aluminosilicates in the alkylation and transalkylation reactor. The catalysts in the alkylation and transalkylation reactors may be the same or different and include low sodium zeolites having silica/alumina mole rations between 2 and 80, preferably between 4-12. Exemplary zeolites include molecular sieves of the X, Y, L, B, ZSM-5, and omega crystal types with steam stabilized Y zeolite containing about 0.2% Na
2
O being preferred. The alkylation reactor is operated in a downflow mode and under temperature and pressure conditions in which some liquid phase is present.. The output from the alkylating reactor is cooled in a heat exchanger and supplied to a benzene separation column from which benzene is recovered overhead and recycled to the alkylation reactor. The initial higher boiling bottoms fraction from the benzene column comprising ethylbenzene and polyethylbenzene is supplied to an initial ethylbenzene column from which the ethylbenzene is recovered as the process product. The bottoms product from the ethylbenzene column is supplied to a third column which is operated to provide a substantially pure diethylbenzene overheads fraction which contains from 10 to 90%. preferably 20 to 60 % of diethylbenzene. The diethylbenzene overheads fraction is recycled to the alkylation reactor while a side cut containing the remaining diethylbenzene and triethylbenzene and higher molecular weight compounds is suppled to the reactor along with benzene. The effluent from the reactor is recycled through the heat exchanger to the benzene column.
U.S. Pat. No. 4,774,377 to Barger et al. discloses an alkylation/transalkylation process which involves the use of separate alkylation and transalkylation reaction zones, with recycle of the transalkylated product to an intermediate separation zone. In the Barger process, the temperature and pressure conditions

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalysts with low concentration of weak acid sites does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalysts with low concentration of weak acid sites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalysts with low concentration of weak acid sites will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2442578

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.