Cartesian parallel manipulators

Machine element or mechanism – Control lever and linkage systems – Multiple controlling elements for single controlled element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C901S002000, C901S016000

Reexamination Certificate

active

06729202

ABSTRACT:

BACKGROUND OF THE INVENTION
1 Field of the Invention
The present invention generally relates to manipulators and, more particularly, to parallel manipulators moving according to three translational degrees of freedom.
2. Description of the Prior Art
Manipulators have been provided for moving and positioning elements in space, often in response to an output from an automation system. Such manipulators are thus found in various uses, including manipulation of objects in space, supporting and displacing loads, precise displacing of tools, as in the moving tool support of a milling machine.
Serial manipulators are known to have a plurality of links interconnected in series, via joints, to form a chain of links. All joints of a serial manipulator are individually actuated to move an end-effector, often according to the three translational degrees of freedom (X, Y and Z) and the three rotational degrees of freedom (roll, pitch and yaw).
An advantage of serial manipulators resides in the ease of calculating the anticipated position and orientation of its end-effector according to given inputs from the actuated joints of the manipulator. This calculation is known as forward kinematic analysis. Oppositely, the calculation of the necessary inputs of the actuating devices on the links for the end-effector to reach a given position and orientation is known as the inverse kinematic analysis. Serial robots have straightforward forward kinematic analysis leading to a unique solution and, usually, a very complicated inverse kinematic analysis. Parallel manipulators, on the other hand, have, usually, a very complicated forward kinematic analysis and generally (but not always) a straightforward inverse kinematic analysis.
Each link of a chain of links of a serial manipulator must often sustain the entire load supported by the serial manipulator, as well as the weight of the links that are sequentially closer to the end-effector in the chain of links. The links of serial manipulators must be constructed to support such loads, and thus serial manipulators enabled to support heavy loads are themselves heavy. This reduces the load lifting capability of the serial manipulators as a portion of the load comes from its links. Consequently, in existing serial manipulators, heavy loads are constantly set in motion, even when only small and light objects are displaced.
Parallel manipulators provide the advantage of having separate legs sharing the support of a load. Parallel manipulators have a plurality of supporting legs, each separated from one another (i.e., in parallel). Consequently, a load supported by the moving platform is split into smaller loads for each supporting leg. The parallel manipulators are also advantageous in not requiring the actuating devices to be mounted on the links. In many cases, the actuating devices of the parallel supporting members are floor-mounted. Consequently, for a same object to be moved, parallel manipulators involve substantially smaller loads set in motion than would require a serial manipulator.
The complexity of the forward kinematic analysis often precludes the use of parallel manipulators, unless such manipulators involve closed-form solutions, or sufficient computational speed is provided to carry out numerical iterative methods. Closed-form solutions involve solutions based on the solving of polynomials of degree four or less, in which case the solution is readily attained without necessitating numerical iterative methods.
Translational parallel manipulators whose moving platforms are limited to Cartesian movement (i.e., according to three translational degrees of freedom) have been provided in the prior art. The elimination of the three rotational degrees of freedom simplifies the kinematic analyses. Also, for a variety of applications, three translational degrees of freedom are sufficient.
The publication “Structural Synthesis of Parallel Robots Generating Spatial Translation,” by J.-M. Hervé and F. Sparacino, reveals the topology of a 2-CRR robot [i.e., a robot having two legs formed serially of a cylindrical joint (C-joint) and two revolute joints (R-joints)]. In the robot of this reference, C-joints have orthogonal axes and are proposed to be actuated. In Section V thereof, there are also notes mentioning that, if a robot with fixed motors is desired, three legs are required.
The publication “Design of Parallel Manipulators via the Displacement Group,” by J.-M. Hervé, presents three designs that were chosen from a multitude of possibilities enumerated in “Structural Synthesis of Parallel Robots Generating Spatial Translation,” by Hervé and Sparacino. The “Y-Star” parallel robot, one of the three designs, relates in subject matter to U.S. Pat. No. 4,976,582, issued in 1990 to Reymond Clavel, and entitled “Device for the Movement and Positioning of an Element in Space,” which proposes a popular translational parallel robot (the Delta robot). Another one of the three designs, the “Prism” robot is described in “Design of Parallel Manipulators via the Displacement Group,” and has passive prismatic joints (P-joints), i.e., P-joints that are not actuated. Such passive P-joints are quite impractical. It is pointed out that, in “Design of Parallel Manipulators via the Displacement Group,” Herve proposes a generally accurate actuation scheme, stating, however, that the direction of the passive P-joints may be arbitrary, which is wrong. For example, in his “Prism” robot, in at least one of the legs with coaxial prismatic actuators, the direction of the passive P-joint should not be perpendicular to the axis of the cylindrical joint (C-joint) of the leg.
The publication “A Novel Three-DOF Translational Platform and Its Kinematics,” by T. S. Zhao and Z. Huang proposes a 3-RRC parallel robot with the axes of the C-joints being coplanar. There are two characteristics to this coplanar configuration in the above-mentioned robot: (i) the three translational degrees of freedom of the moving platform cannot be controlled by actuators placed at the C-joints, and (ii) the direct kinematics cannot be solved linearly. The authors do not discuss these drawbacks.
The possibility of using a CRR leg or, more generally, a PRRR leg for constructing a translational parallel robot has not been forgotten in the past. This possibility was mentioned in the publication “Synthesis by Screw Algebra of Translating In-Parallel Actuated Mechanisms,” by A. Frisoli, D. Checcacci, F. Salsedo and M. Bergamasco.
In the above publication, researchers have proposed designs with legs having only five R-joints or four passive R-joints and one active P-joint. Initially, the designs included two U-joints (i.e., universal joints), but it became evident that the only requirement should be that, in each leg with five R-joints, the axes of two or three successive R-joints are parallel as well as the axes of the other R-joints, or in each leg with four R-joints and one P-joint, the axes of two successive R-joints or two R-joints connected via a P-joint are parallel, while the axes of the other two R-joints are also parallel. An example of this is also illustrated in “A Family of 3-DOF Translational Manipulators,” by M. Carricato and V. Parenti-Castelli.
The publication “Kinematic Analysis of Spatial Parallel Manipulators: Analytic Approach,” by Doik Kim proposes a number of new generalized translational parallel mechanisms. One of the proposed architectures is based on three PRRRR legs. In each leg, the axes of the last three R-joints are mutually parallel but not parallel to the direction of the P-joint, and the second R-joint is skew to both the direction of the P-joint and the axes of the other three R-joints.
Finally, U.S. Pat. No. 5,156,062, issued in 1992 to Walter T. Appleberry, entitled “Anti-Rotation Positioning Mechanism,” discloses a 3-URU (or 3-UPU) translational parallel mechanism.
In the creation of a manipulator, two factors are opposed. On one hand, the moving platform of the manipulator must be displaceable as freely as possible, with regard to the six degrees of freedom. On the ot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cartesian parallel manipulators does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cartesian parallel manipulators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cartesian parallel manipulators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3227581

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.