Card memory apparatus

Static information storage and retrieval – Hardware for storage elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S063000

Reexamination Certificate

active

06775169

ABSTRACT:

The present invention relates to card memories, particularly to the provision of memory on a flexible card having an input/output device such as surface contacts. The memory may be read/writable and non-volatile.
TECHNICAL BACKGROUND OF THE INVENTION
There is a general requirement for storing data, particularly personal data, for use in various types of transactions such as health insurance, telephone calls, paying for mass transit, as well as in “set-up” boxes for satellite video or pay TV, etc. One way of doing this is digitally. For everyday personal use, such a digital data store should be compact e.g. about as big as a conventional credit card, and must be able to
1) withstand moisture—at least quick immersion and/or high humidity levels,
2) withstand dust particles encountered in handbags, coat pockets and wallets without loss of performance,
3) withstand bending without failure, e.g. when forced into a wallet,
4) be UV resistant,
5) withstand electromagnetic and magnetic fields produced by common household devices as well as small magnets without loss of data,
6) to be manufactured in high volumes at a low manufacturing cost.
There are several types of known transportable devices for strong digital data. The ubiquitous “floppy” diskette provides reliable access to 1.44 Mbyte of data storage. Although relatively robust, diskettes still require careful handling and are sensitive to dust and bending. Developments of higher storage capacity have been introduced, for example ZIP drives with capacities over 100 Mbytes. Removable hard drives such as supplied by Syquest Corporation, USA allow the storage of many hundreds of megabytes of data. Neither diskettes nor replaceable hard drives are flexible. They are sensitive to mechanical damage and dust and are not suitable for carrying in a coat pocket, in a wallet or in a lady's handbag for daily use. They are generally not used with terminals, e.g. Point-of Sale (POS) terminals for financial purposes or with other forms of data transfer, e.g. for use as identification of membership of a health insurance organization.
In addition so-called PCMCIA memory cards are known which include a 68 pin connector at one end, are usually electromagnetically shielded with metal layers on both sides, are not flexible and are about 5 mm thick. PCMCIA cards with the ability to store several megabytes of data are known, for instance, from EP 596 276, U.S. Pat. Nos. 5,293,424, 5,671,367, 5,875,480. PCMCIA cards provide a high quality connector and metallic screening suitable for installation in lap-tops and computers and are highly reliable. However, their construction is expensive and they are not very suitable for daily use in coat pockets, wallets or ladies' handbags.
Optical CD-ROM's have developed beyond their original read-only status and rewritable CD-ROM's are supplied by several companies, e.g. the Hewlett-Packard RW 8100 series. A modification to the basic idea is available which includes placing a CD-ROM type data recording medium on a flexible card, for example, LaserCard™ from Drexler Technology Corporation, USA. The disadvantage of all CD-ROM products is that the data may be corrupted by scratches. This makes them suitable for home storage of data, e.g. for music or video, but the surface is not sufficiently robust for the worst of daily uses.
Credit cards with magnetic stripes are also well know but have a very limited storage capacity. Also the data may be wiped by magnets such as the types used to attach identification badges. Long lengths of magnetic tape have also been used successfully for storing very large amounts of data and are used daily in the form of cassettes for playing music. However, they have not found favor for personal storage of data.
Next generation banking cards include microprocessors accessible through surface contacts—sometimes called “smartcards”. These known devices have a higher memory capacity than a magnetic stripe card but the amount is still limited. The cards are flexible, sealed against moisture and have surface contacts which are not blocked by dust. One disadvantage of the known surface contacts is that high electrical potentials may be generated by static electricity and this may result in loss of data on discharge. To solve this problem card readers have been provided with electrostatic discharge protection as described for instance in U.S. Pat. No. 5,892,216.
Summarizing the above, there is no suitable storage device available for everyday use which is compact, reliable, has a large memory capacity and can be produced economically.
It is an object of the present invention to provide a digital storage device which is suitable for daily personal use.
It is a further object of the present invention to provide a digital storage device which has more storage capacity than smartcards while maintaining their flexibility and robustness.
It is still a further object of the present invention to provide surface contacts for a memory card which are better protected against electrostatic discharges.
SUMMARY OF THE INVENTION
One aspect of the present invention is to integrate components into a thin flexible memory card with an input/output device so that the components can cooperate as a compact unit providing environmental sealing and secure access to several Mbytes of digital data. The present invention includes a card memory device comprising: a microprocessor, a plurality of memory units for storage of digital data the memory units being embedded in the card memory device and a selecting device for selecting one of the memory units and for routing address information and data to and/or from the selected memory unit, both the microprocessor and the selecting device being embedded in the card memory device. The card memory device has an input/output device (I/O device) for receiving and for transmitting data. It is not anticipated that the form of the I/O device is a limitation on the present invention. For instance, the I/O device may comprise surface contacts for sliding introduction into a card reader. Alternatively, the card may be contactless and the input/output is via electromagnetic radiation such as radio frequency or infra-red transmission. For radio frequency transmissions the input device will generally comprise an antenna embedded in the card. An infra red input device will generally comprise a photovoltaic cell of some kind for receiving the infra red light and for converting it into electrical signals as well as a transmitting device such as an LED (light emitting diode). The power to drive the electronic components of the card may be provided from the incident electromagnetic radiation or may be provided by a battery. A serial port of the microprocessor is connected to the input device, e.g. to one of the surface contacts. Serial data is entered into or read out of the card memory device through the microprocessor. The microprocessor is preferably a secure single chip microprocessor. A serial data port of the microprocessor is connect to a serial port of the selecting device via a first serial bus. For selecting a memory unit, a parallel port of the selecting device is connected to a parallel port of the microprocessor via a parallel address bus. A parallel portion of a memory storage location (bit) address is output or input via the parallel bus. The selecting device has a plurality of serial ports each one connected to a respective memory unit via a second serial bus. The parallel address portion defines one of the input/output serial ports of the selecting device and its associated serial bus and memory unit. Once the serial bus has been selected the microprocessor then sends serial address information via the first and second busses to define a digital data storage location of the selected memory unit. Memory units may be organized in memory modules, each memory module including a plurality of memory units. Each memory unit may include one or more memory devices, e.g. memory chips.
The present invention also includes a card memory device comprising a first set of sur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Card memory apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Card memory apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Card memory apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3292729

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.