Information recording method and information reproducing method

Motion video signal processing for recording or reproducing – Local trick play processing – With randomly accessible medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C386S349000, C386S349000

Reexamination Certificate

active

06697565

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention is concerned with the improvements in and relating to an information recording method of recording video information on an information storage medium and an information reproducing method of reproducing the video information from the information storage medium, and more particularly to those suitable for a case where the video information recorded on the information storage medium is the digital video information compressed according to the MPEG (Moving Picture Image Coding Experts Group) standards.
In recent years, systems for playing back an optical disk on which video (or moving picture) information and audio information have been recorded have been developed. They have been widely used in the form of, for example, LDs (Laser Disks) or video CDs (Compact Disks) for the purpose of reproducing movie software or karaoke.
In this connection, the DVD (Digital Versatile Disk) standard employing the internationally standardized MPEG-2 scheme and the AC (Audio Compression)-3 or other audio compression schemes has been proposed. The DVD standard covers playback-only DVD video (or DVD-ROM (Read-Only Memory)), write-once DVD-R (Recordable), rewritable DVD-RAM (Random Access Memory) (or DVD-RW (Rewritable)).
The DVD video (DVD-ROM) standard supports MPEG-2 for moving picture compression scheme and not only liner PCM (Pulse Code Modulation) but also AC-3 audio and MPEG audio for audio recording scheme.
The DVD video standard further supports sub-picture data obtained by run-length compressing the bit map data for subtitles and reproduce control data (navigation data) for data searching by fast-forward playback or fast-rewind playback.
Furthermore, the DVD video standard supports ISO (International Organization for Standardization) 9660 and UDF (Universal Disk Format) to allow computers to read data.
For DVD video (DVD-ROM) optical disks, a 12-cm diameter single-sided single-layer disk has a storage capacity of about 4.7 GB (Giga Bytes); a 12-cm diameter single-sided double-layer disk has a storage capacity of about 9.5 GB; and a 12-cm diameter double-sided double-layer disk has a storage capacity of about 18 GB, provided that 650-nm (nanometers) wavelength laser light is used for reading.
On the other hand, for DVD-RAM (DVD-RW) optical disks, at the present time, a 12-cm diameter single-sided disk has a storage capacity of about 2.6 GB and a 12-cm diameter double-sided disk has a storage capacity of about 5.2 GB. Namely, DVD-RAM optical disks in practical use have a smaller storage capacity than DVD-ROM disks of the same size.
In playback-only DVD video (DVD-ROM), like a hierarchical file structure used by a general-purpose computer operating system, the directory structure of information (data files) recorded on an information storage medium is such that a subdirectory of video title set VTS and a subdirectory of audio title set ATS are connected to a root directory as shown in FIG.
1
.
In the subdirectory of video title set VTS, various video files (including VMGI, VMGM, VTSI, VTSM, and VTS) are so arranged that the individual files can be managed in order. A specific file (for example, a specific VTS) can be accessed by specifying a path from the root directory to the file.
Specifically, the root directory of a DVD video disk includes a subdirectory called video title set VTS. The subdirectory can contain various management data files including VIDEO_TS.IFO or VTS

01

0.IFO, backup files, including VIDEO_TS.BUP and VTS

01

0.BUP, for backing up the information in those management data files, and a video data file VTS

01

1.VOB managed on the basis of the contents of the management data files and used to store digital video information. The subdirectory can also contain menu data files (including VMGM and VTSM) for storing specific menu information.
A DVD video disk is composed of a video manager VMG and at least one or up to 99 video title sets VTSs. The video manager VMG is composed of control data VMGI, VMG menu video object set VMGM_VOBS, and backup control data VMGI_BUP. Each data is recorded on an information storage medium as a single file.
As shown in
FIG. 1
, on the DVD video disk, the individual video title sets (e.g., video title set VTS #
1
and video title set VTS #
2
) have to be recorded in separate files. In each video title set (e.g., video title set VTS #
1
), control data VTSI, VTS menu video object set VTSM_VOBS, and backup control data VTSI_BUP are recorded in separate files. Additionally, title video data VTS

01

1.VOB and VTS

01

2.VOB in the VTS are recorded in plural files.
The DVD-RAM disk uses a UDF file system, not a FAT (File Allocation Table) file system. The details of UDF will be described in details later. Like FAT, UDF enables a hierarchical structure of files and records data in files on an information storage medium. In the prior art, both of the UDF file and the FAT file are filled with data and have no unrecorded area in them.
The contents will be explained in detail using one example. For example, when a statement has been written using word processor software (such as Ichitaro, Word, or Amipro) running on a PC (Personal Computer), the written statement is recorded on an information storage medium as a file. In this case, all the file is filled with text data. Even if a space area or a continuos enter mark portion with no sentence continues long in the middle of the written sentence, that portion in the stored file will be filled with space data and enter data and therefore there will be no fully unrecorded area in the file.
Even when the user reads the document file and stores the data after deleting the middle of the sentence, an unrecorded area is never defined in the stored information and is recorded on the information storage medium as a file with the data items before and after the deleted portion putting together. As a result, the size of the file recorded on the information storage medium decreases by the amount of data in the deleted portion.
With application software running on an ordinary PC, a file read from an information storage medium for editing is transferred as it is to a buffer memory (semiconductor memory) on the PC. The edited data is stored temporarily in the buffer memory on the PC. Once the user has given an instruction to store the file, the edited data stored in the buffer memory on the PC is written over the whole file on the information storage medium. As described above, with the conventional file system, such as a FAT or UDF file system, when the file data is changed, all the data in the file is changed at a time in the overwrite process. This is different from the present invention where the data in only a part of the file is changed.
FIGS. 2A and 2B
illustrate examples of reproducing video information using program chains PGCs on a DVD video disk. As shown in
FIG. 2A
, the playback data is divided into cells and playback sections from cell A to cell F are specified. In the individual program chains PGC #
1
to #
3
, PGC information is defined as shown in FIG.
2
B. Specifically, the table in
FIG. 2B
reads as follows.
1. Program chain PGC #
1
shows an example of being made up of cells specifying consecutive playback sections. The playback sequence is:
Cell A → Cell B → Cell C.
2. Program chain PGC #
2
shows an example of being made up of cells specifying intermittent playback sections. The playback sequence is:
Cell D → Cell E → Cell F.
3. Program chain PGC #
3
shows an example of being made up of cells specifying disorderly playback sections, regardless of the direction of playback or repetitive playback. The playback sequence is:
Cell E → Cell A → Cell D → Cell B → Cell E
By defining different program chains PGCs as described above, different display sequences can be realized for the same cells. In a DVD video disk, all the cell information is not necessarily displayed by a single program chain PGC because of the freedom of program chain PGC setting.
What has been explained a

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Information recording method and information reproducing method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Information recording method and information reproducing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Information recording method and information reproducing method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3292730

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.