Electrical computers and digital data processing systems: input/ – Intrasystem connection – Bus access regulation
Reexamination Certificate
1999-03-08
2002-06-18
Gaffin, Jeffrey (Department: 2182)
Electrical computers and digital data processing systems: input/
Intrasystem connection
Bus access regulation
C710S108000, C340S005300, C340S815400, C340S870030, C439S490000, C439S638000, C439S945000, C455S039000
Reexamination Certificate
active
06408352
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a card connection adaptor for connecting an IC card such as a memory card or a functional extension card to an information system such as a personal computer, or a portable information system represented by a PDA (personal digital assistant), a digital still camera and a digital video camera.
2. Description of Related Art
Recent notebook PCs (personal computers) are generally equipped with PC card slots. Functional extension of such a notebook PC can be achieved by inserting a PC card into the PC card slot. Exemplary PC cards include flash memory cards, modem cards and SCSI cards.
The PC cards are designed in compliance with the PC Card Standard, and classified into three types which have thicknesses of 3.3 mm (Type I), 5.0 mm (Type II) and 10.5 mm (Type III), respectively, with a rectangular plan shape of 54.0-mm width and 85.6-mm length.
For smaller-size information systems such as digital cameras, electronic organizers and portable phones, smaller-size CF (CompactFlash (registered trade mark)) cards are employed instead of the PC cards to meet a heavy demand for size reduction. Typical examples of the CF cards are flash memory cards which are employed to store image data picked up by digital cameras and schedule data and address data for electronic organizers.
The CF cards are designed in compliance with the CFA (CompactFlash Association) Standard and classified into two types which have thicknesses of 3.3 mm (Type I) and 5.0 mm (Type II), respectively, with a rectangular plan shape of 36.4-mm width and 42.5-mm length.
Further, the digital cameras, digital voice recorders and portable phones employ small-size memory cards adapted only for memory functions. Such a small-size memory card includes a memory IC die packaged by resin-sealing, and is characterized by its extremely small thickness. Examples of the memory cards include SmartMedia cards (SSFDCs: solid state floppy disk cards), Miniature cards, MemoryStick cards and MultiMedia cards.
These cards have outer dimensions as shown below.
SmartMedia (SM): 37×45×0.76 (mm)
Miniature card (MC): 38×33×3.5 (mm)
MemoryStick (MS): 50×21.5×2.8 (mm)
MultiMedia card (MMC): 32×24×1.4 (mm)
Since the smaller-size information systems do not always have sufficient data processing power, it is often necessary to load image data picked up by a digital camera into a notebook PC or to transfer data between an electronic organizer and a notebook PC.
However, when data retained in the small-size information system are to be loaded into the notebook PC via a CF card or a small-size memory card, for example, such a card cannot directly be fitted in the PC card slot of the notebook PC because the PC card slot is designed in compliance with the PC Card Standard.
Therefore, card connection adaptors are conventionally provided for connecting a CF card or a small-size memory card to a PC card slot.
Such a card connection adaptor includes a housing having a shape conformal to the PC card, a first connector provided on a front side of the housing for connection to a PC card slot, and a second connector provided within the housing for connection to a CF card or a small-size memory card. A card retaining space for receiving the CF card or the small-size memory card is provided within the housing. The card retaining space opens into a rear face of the housing as seen in an insertion direction in which the card connection adaptor is inserted into the PC card slot. Where the small-size card has a thickness close to the thickness of the card connection adaptor, the card retaining space may also open into the upper and/or lower side of the housing. In any case, the small-size card is inserted into the card connection adaptor from the rear side of the card connection adaptor in the same direction as the insertion direction in which the card connection adaptor is inserted into the PC card slot.
However, this arrangement has drawbacks from mechanical and electrical viewpoints. More specifically, when the card connection adaptor is fitted in the PC card slot, a rear portion of the small-size card fitted in the card connection adaptor is exposed from an opening of the PC card slot. Hence, there is a possibility that the small-size card is disconnected from the card connection adaptor by some external force. If the small-size card is disconnected during data transfer between an information system and the small-size card, the data transfer is of course failed, and destruction of date or destruction of elements inside the small-size card may result from erroneous signal input. This is particularly problematic in the case of a card which is designed to lead signal input/output interconnections from the small-size card (e.g., GSM card). Further, it is difficult to provide a lock holder in the card connection adaptor for assuredly holding the small-size card, whereas it is easy to provide a holder mechanism in a PC card slot for holding a card inserted therein.
Since it is physically possible to insert the small-size card into the card connection adaptor from the rear side thereof with the card connection adaptor fitted in a PC card slot, a user may make an attempt to insert the small-size card into the card connection adaptor in this sate. In such a case, a great external force is exerted onto the connector of the PC card slot, so that the connector may be damaged.
In addition, there is a possibility that the small-size card is inserted into or withdrawn from the card connection adaptor fitted in a PC card slot when the information system is energized. Therefore, in designing the card connection adaptor, a consideration should be given to prevent the small-size card from being damaged by so-called active card insertion and withdrawal. More specifically, connection terminals of the card connection adaptor should accurately be positioned so that the connection/disconnection orders and connection/disconnection timings for connection and disconnection of connection terminals of the small-size card with respect to the connection terminals of the card connection adaptor can be kept substantially constant when the small-size card is inserted into or withdrawn from the card connection adaptor. When the small-size card is to be inserted into the card connection adaptor, for example, connection of a grounding terminal, a source terminal, a first signal terminal, a second terminal and so forth should be established in the order named within an allowable connection timing range. It is, therefore, extremely difficult to design the card connection adaptor which can offer a guarantee against the active insertion and withdrawal.
SUMMARY OF THE INVENTION
It is a first object of the present invention to provide a card connection adaptor which is capable of preventing disconnection of a small-size card therefrom when the adaptor is fitted in a card slot, thereby having an improved reliability.
It is a second object of the present invention to provide a card connection adaptor which is capable of prohibiting a small-size card from being inserted thereinto or withdrawn therefrom when the adaptor is fitted in a card slot, thereby having an improved reliability and a simplified construction.
It is a third object of the present invention to provide a card connection adaptor which is constructed so as to be able to give an indication of the presence or absence of a small-size card in the adaptor when the adaptor is fitted in a card slot.
In accordance with one aspect of the present invention, there is provided a card connection adaptor for connecting to a connector of a card slot compliant with a predetermined first standard, a card compliant with a second standard which is different from the first standard, the card connection adaptor comprising: a first connector compliant with the first standard and adapted to be electrically connected to the connector of the card slot; a second connector compliant with the second standard; signal conversion circuitry connec
Hosaka Taiji
Yasufuku Kaori
Gaffin Jeffrey
Japan Solderless Terminal Mfg. Co., LTD
Perveen Rehana
Rader & Fishman & Grauer, PLLC
LandOfFree
Card connector adaptor with indicator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Card connector adaptor with indicator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Card connector adaptor with indicator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2953897