Call processing system and service control point for...

Telephonic communications – Centralized switching system – Call distribution to operator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S265090, C379S265020

Reexamination Certificate

active

06731744

ABSTRACT:

RELATED APPLICATIONS
Not applicable
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable
MICROFICHE APPENDIX
Not applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is related to the field of call processing systems, and in particular, to a system that routes calls to a call center.
2. Description of the Prior Art
Call processing is a key component to companies looking to compete in rapidly growing global markets. Call processing is essential to companies for entering sales orders, furnishing product or service information, and providing customer service. The increasing number of calls handled by a call center and the need for expanding service to new geographic regions introduce new demands to call center processing. In order to meet these demands, companies are increasing their number of call centers to provide better customer service such as extended hours of operations and service agents fluent in the caller's native language. One call center could provide for continuous operating hours and a diverse array of foreign language agents. However, constraints such as graveyard shifts and lack of ethnic diversity in a certain geographic region make a one call center solution difficult. Other solutions such as different “800” numbers based on language or hours of operations are confusing to the consumer and thus impractical. Greater number of call centers can also improve customer service by reducing queuing times through diverting calls to less occupied call centers.
A flexible and robust call processing solution with an expansive network of call centers is needed. An important factor in providing an operable solution is to minimize costs. Simplifying each call center down to the service agent assists in reducing costs and implementation times. Less implementation of call processing equipment can further reduce unneeded costs. In the event that a call center becomes impaired, the call processing solution should be flexible enough to route calls to alternate call centers. Implementation of new call processing schemes should be uniform and rapid across the network of call centers. Companies also require usage and call information to monitor call centers usage and improve future call processing designs. Ultimately, companies need greater freedom to employ their own provisioning, managing, and billing tools for their call centers.
One current system uses a telephone circuit switch to receive calls and signaling into a network. The telephone circuit switch processes the called number to generate and transmit a first query to a Service Control Point (SCP). The SCP processes the first query to generate a second query to a routing processor at a call center. The routing processor at the call center responds to the SCP with routing information, and the SCP responds to the telephone circuit switch with the routing information. The telephone circuit switch then extends the call to another telephone circuit switch connected to the call center based on the routing information. This other telephone circuit switch then transfers the call to the call center over a dedicated Time Division Multiplexing (TDM) line, such as an Integrated Services Digital Network (ISDN) connection. This transfer includes a transfer of the called number. Routing equipment at the call center must process the called number to internally route the call to the destination within the call center. This system is deficient because it forces the routing equipment at the call center to handle dialed number processing. It also does not allow the efficient utilization of packet-based transport technologies.
Another current system uses a telephone circuit switch to receive calls and signaling into a network. The telephone circuit switch processes the called number to generate and transmit a first query to a Service Control Point (SCP). The SCP responds to the telephone circuit switch with the routing information. The telephone circuit switch then extends the call to a service platform using Extended Superframe (ESF) or ISDN connections. The service platform processes the called number to generate a second query to a routing processor at a call center. The routing processor at the call center responds to the service platform with routing information. The service platform then extends the call to another telephone circuit switch connected to the call center based on the routing information. This other telephone circuit switch then transfers the call to the call center over a dedicated TDM line, such as an ESF connection or an ISDN connection. This transfer includes a transfer of the called number. Routing equipment at the call center must process the called number to internally route the call to the destination within the call center. This system is deficient because it forces the routing equipment at the call center to handle dialed number processing. It also does not allow the efficient utilization of packet-based transport technologies.
SUMMARY OF THE INVENTION
The invention solves the above problem by providing integrated broadband call processing that uses a call center resource processor to determine how to route calls to the call center. The invention includes a call processing system that receives an initial signal and processes the initial signal to generate a service control point (SCP) query for a service control point. The call processing system transmits the SCP query to the service control point. After receiving the SCP query, the service control point processes the SCP query to select the call center resource processor. The service control point then transmits an address query for the call center resource processor. The service control point receives an address response from the call center resource processor wherein the address response includes an absolute address for the call. The “absolute” address is a hardware address of a device used to initially answer the call at the call center. The absolute address is contained in packets for the call. Some examples of absolute addresses are a port identifier, Media Access Control (MAC) layer address, and Asynchronous Transfer Mode (ATM) address. The absolute address does not require translation at the call center to identify the answering devices. In contrast, telephone numbers require translation to identify a terminating point or telephone. The service control point transmits an SCP response for the call processing system wherein the SCP response includes the absolute address for the call. After receiving the SCP response, the call processing system processes the SCP response in the call processing system to generate a route instruction to cause a network element system to route the call to a call center resource in call packets containing the absolute address. The call processing system transmits the route instruction from the call processing system for the network element system.
The invention allows the call center and communications network to efficiently utilize packet-based transport technologies. This results in the elimination of complex routing equipment at the call center site. Routing can now be passive at the call center resource level since the call can be routed directly to the service agent or voice response unit based on the absolute address. Any address translation such as dialed number processing at the call center resource level can be removed.
Another advantage from utilizing packet-based transport technologies is the reduction of routing equipment for separate data lines for service data. Service data is data associated with the call or data derived from the call. Some examples of service data include caller name and address, service scripts, or other screen pop information. In a screen pop operation, service data such as customer profile and product and service information pops up on the agent's computer when the agent receives the incoming call. Because the call processing system already has the absolute address for the call, the invention can now transmit the service data in data packets using the abso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Call processing system and service control point for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Call processing system and service control point for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Call processing system and service control point for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3192631

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.