Electronic digital logic circuitry – Interface – Supply voltage level shifting
Reexamination Certificate
1998-11-13
2001-02-06
Tokar, Michael (Department: 2819)
Electronic digital logic circuitry
Interface
Supply voltage level shifting
C326S083000, C326S024000, C327S332000
Reexamination Certificate
active
06184715
ABSTRACT:
TECHNICAL FIELD
The present invention relates to an input circuit. Input circuits are normally provided in integrated circuits for interfacing with external signals. In particular, the invention refers to an input circuit with “bus-hold” features, capable of receiving input signals with voltage levels higher than the voltage supply thereof.
BACKGROUND OF THE INVENTION
In the field of integrated circuits, input circuits are known with “bus-hold” or “bus-keeper” features, that is, that are capable of maintaining a prescribed logic state on the bus of external lines supplied thereto even when the driver circuits driving the bus are put in a high impedance (tri-state) mode. In this way, it is possible to maintain on the lines of the bus a well defined logic state even when no circuits drive the bus, preventing leakage currents due to a not well defined logic state, or avoiding the necessity of pull-up or pull-down resistors.
A typical structure of a bus-hold input circuit includes two inverters, for example of the CMOS type, coupled to form a latch circuit which keeps and regenerates an input signal applied to a signal line coupled to the input of the input circuit. A first inverter receives the input signal and provides a regenerated output signal, which is then supplied to the remaining blocks of the integrated circuit to which the input circuit belongs. The second inverter has an input coupled to the output of the first inverter and an output coupled to the input signal line which is to be kept at a prescribed logic level, even in the absence of an external driving signal. Typically, the second inverter has a high output impedance, so to be easily driven by the driver of the external signal line, when the driver is activated. In this way, the signal line can be driven by another, stronger drive circuit.
Depending on the particular application, it is necessary that the input circuit assure, for a given voltage on the input signal line, well defined values for the so-called “sustaining current”, in a bus-hold mode of operation, and for an overdrive current to be furnished to the signal line by an external driver driving the signal line. These voltage and current parameters have values that are specified, depending on the particular application, and can vary with the particular application.
Bus-hold input circuits are also known whereby the second inverter is clocked, or whereby the second inverter can be put in a high-impedance condition. In some applications it could be useful to disable the input circuit bus-hold function for a prescribed logic level on the input signal line, or even to disable the bus-hold function. This is achieved by providing, in series to P and N channel MOSFETs (pull-up and pull-down) forming the second inverter, transistors of the same type (a P-channel MOSFET in series with the pull-up, and an N-channel MOSFET in series with the pull-down) controlled by a drive signal for turning the MOSFETs ON and OFF to enable or disable the bus-hold finction, respectively, for the high or low logic states.
Additionally, bus-hold input circuits are known where the second inverter is replaced by a NAND or NOR logic gate with two inputs, one connected to the output of the first inverter and the other behaving as a control input for a control signal that, depending on its state, allows the function of the input circuit to be changed from a bus-hold function to a simple pull-up or pull-down function for the signal line coupled to the input. This is useful in applications involving microprocessors, where it is necessary to put the lines of the external bus to a prescribed logic level during the execution of particular scanning tests.
Another known bus-hold input circuit structure provides two inverters coupled in series, with the input of the first inverter coupled to the input signal line, and the output of the second inverter forming the regenerated signal which is supplied to the remaining blocks of the integrated circuit. The output of the second inverter is also coupled to the input of the first inverter and thus to the input signal line, again forming a latch circuit and maintaining the signal on the input signal line.
These input circuits are not capable of accepting input signals with voltages higher than the supply voltage of the input circuit. This feature, in the case of input circuits with a 3.3 V supply, means that the input circuits are not capable of accepting voltages of 5 V.
The reason why the proposed bus-hold input circuits are not capable of tolerating input voltages higher than their own power supply voltage is that in all the bus-hold circuits the input signal line is always connected to the drain electrode of a P-channel MOSFET of the second inverter or, more generally, of the logic gate that, together with the first inverter, forms the latch maintaining the signal on the input line. When the voltage on the input signal line exceeds the supply voltage of the input circuit by at least one turn-on threshold of a PN junction, a parasitic diode associated with the P+ drain region of the P-channel MOSFET and the N type bulk of such a MOSFET (connected to the V
DD
voltage of the input circuit) turns ON, setting up a direct path between V
DD
and the input.
SUMMARY OF THE INVENTION
An input circuit for an integrated circuit for interfacing an external signal line external to the integrated circuit includes a first circuit for receiving an input signal on the signal line and providing at an output a regenerated signal, A second circuit receiving the regenerated signal at an input and drives the external signal line to maintain a predetermined logic level on the external signal line, even in the absence of any external signal driving the external signal line. A third circuit is capable of providing to the second circuit a supply voltage equal to the greater of a supply voltage of the integrated circuit to which the input circuit belongs, and the voltage existing on the external signal line. As a result, the integrated circuit can accept input signals having voltages that are greater than a supply voltage of the integrated circuit.
For example, in some types of circuits, a capability for accepting a 5 volt input signal by an integrated circuit having a lower power supply voltage is called “5V tolerance”. This feature is particularly important considering that even if there is a trend towards integrated circuits working at 3.3 V, there is often the necessity of incorporating in a same electronic system integrated circuits using a 3.3 V power supply and integrated circuits using a 5 V power supply. A capability for the input circuits to accept input voltages of 5 V allows signals to be coupled between electronic circuit boards that were designed at different times. The necessity of having input circuits capable of tolerating input signals with voltages higher than their own power supply voltages is not only dictated by the current standards (5V and 3.3V), but the same need will be felt in the future, for different voltage pairs, e.g, 3.3V and 2.5V.
REFERENCES:
patent: 4700086 (1987-10-01), Ling et al.
patent: 4800303 (1989-01-01), Graham et al.
patent: 5027008 (1991-06-01), Runaldue
patent: 5486779 (1996-01-01), Eitrheim
patent: 5646557 (1997-07-01), Runyon et al.
patent: 5699304 (1997-12-01), Jung et al.
patent: 5789937 (1998-08-01), Cao et al.
patent: 5914844 (1999-06-01), Lutley et al.
patent: 5933021 (1999-08-01), Mohd
patent: 6049242 (2000-04-01), Lutley et al.
Catanzaro Giorgio
Romano Fabrizio
Carlson David V.
Chang Daniel D.
Galanthay Theodore A.
Seed IP Law Group PLLC
STMicroelectronics S.r.l.
LandOfFree
Bus-hold input circuit adapted for receiving input signals... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bus-hold input circuit adapted for receiving input signals..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bus-hold input circuit adapted for receiving input signals... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2574388