Bus architecture and shared bus arbitration method for a...

Electrical computers and digital data processing systems: input/ – Access arbitrating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S241000, C710S244000, C710S306000, C710S308000, C710S316000, C710S317000, C710S110000, C710S305000

Reexamination Certificate

active

06738845

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates generally to small multiple processor systems, such as mobile phones having a control processor and a signal processor. The invention relates more specifically to systems in which one or more of the processors executes a software program or sequence of steps, which can be altered, modified or upgraded from time to time.
2. Related Art
Communications equipment, such as mobile phones performs a variety of signal and data processing functions. In older systems, a digital signal processor (DSP) processed digitized audio signals and a microprocessor control unit (MCU) controlled general system operations including communication set-up and tear-down for an individual equipment unit (e.g., phone). The DSP and the MCU of the simplest conventional systems communicate with each other through single-port and multi-port shared memory, control signals, etc. However, additional features and control options are possible when the DSP and MCU are permitted to communicate with each other, for example through a shared memory. Although systems wherein the DSP and the MCU do not communicate with each other are possible, the evolution of cellular communications to include support for digital data communications as well as audio communications has led to a greater need for the DSP and MCU to communicate with each other.
Communication standards also have been evolving and continue to evolve. Standards are often designed to be extensible, or new features cleverly designed to be backward compatible with an existing standard, so that the new features can be deployed to the field without the need to replace every piece of equipment already in the field. In order to accommodate such evolution, there is great pressure to move away from read-only memory (ROM) resident software or firmware to execute on the DSP or MCU. Modifying ROM resident software or firmware is difficult because generally ROM cannot be written to, except once at the time of manufacture.
Ultimately, the above-described pressures have resulted in the development of integrated circuits including a DSP, MCU, ROM and RAM. The monetary and size costs of adding RAM to integrated circuit systems have forced the DSP and MCU to share RAM whenever possible. In order to facilitate communication between the DSP and the MCU, and in order to avoid wasting any memory space, which, as noted, is at a premium, they share RAM. System software is loaded into RAM in order to maximize flexibility and the ability to reconfigure systems to stay in conformance with evolving communication standards. However, when memory is shared, for example using the architecture illustrated in
FIG. 1
, the memory access bandwidth becomes a serious problem.
SUMMARY OF THE INVENTION
It is a general object of the present invention to provide an improved bus architecture, especially, although not exclusively, for a communication processor. In meeting the need for an improved bus architecture, the inventors have further discovered a need for a new bus arbitration method.
According to one aspect of the invention, an integrated circuit comprises a first data processing subsystem including a first processor connected to a first bus as a bus master; a second data processing subsystem including a second processor connected to a second bus as a bus master; a first slave subsystem including a memory unit, usable by either of the first and second processors, connected to a third bus; a second slave subsystem usable by either of the first and second processors, including a fourth bus; and the first, second, third and fourth buses selectively connected to each other through a bus arbitration module arranged to connect the first and second bus masters to the first and second slave subsystems without blocking.
Several variants on this aspect of the invention are possible. For example, the first slave subsystem may include a shared memory connected to the third bus and shared by the first processor through the third bus. There may also be a local memory connected to the first processor, which communicates directly with the local memory. The circuit may also include a direct memory access (DMA) controller and a DMA bus connected to the third bus and the fourth bus, whereby data can be moved between the first slave subsystem and the second slave subsystem without intervention by the first processor or the second processor. There may further be a memory access interface (MAI) connecting one of the third and fourth buses to the local memory. The fourth bus may include a connection to an external device, which may be a memory device.
According to another aspect of the invention, an integrated circuit comprises: a data communications device, comprising a communications system having a first internal bus, a supervision and control system having a second internal bus; a first slave device system having a third internal bus; a second slave device system having a fourth internal bus; a direct memory access (DMA) system having a fifth internal bus; and the first, the second, the third, the fourth and the fifth internal buses interconnected through a bus arbitration module (BAM). According to this aspect of the invention, the integrated circuit may further comprise system memory accessed by both the data communications system and the supervision and control system through the BAM and the third internal bus.
The device may be configured so the DMA system communicates data directly between the system memory and the second slave devices system. The second slave devices system may include system support elements, communication support elements and input/output (I/O) elements. The system support elements may include an interrupt controller, the communication support elements and the I/O elements may include a generic serial port. The communication system may include a digital signal processor (DSP), while the supervision and control system may include a microprocessor control unit (MCU). The DSP and MCU may each communicate with an internal device over the first and second internal buses and also with the system memory through the BAM and the third internal bus. The fourth bus may include a connection to an external device, which may be a memory device.
In an aspect of the invention related to telecommunications systems, an integrated circuit device used in a telephone handset, the device may comprise in one integrated circuit a DSP, an MCU, a shared system memory, a DSP bus to which the DSP is connected, an MCU bus to which the MCU is connected, a peripheral unit and a peripheral bus to which the peripheral unit is connected, a memory bus to which the shared system memory is connected, and a BAM which selectively connects the DSP bus and the MCU bus to the memory bus and the peripheral bus, wherein when the DSP and the MCU request access to different buses, access occurs without blocking. In a variation, the device may further comprise a DMA controller and a DMA bus controlled by the DMA controller wherein the BAM further selectively connects the DMA bus between the memory bus and the peripheral bus. The peripheral unit system may also include one or more support elements, including system support elements, communication support elements and I/O support elements. In these variations, the DSP and MCU may each communicate with a local device over the DSP and MCU local bus, respectively, and also communicate with the system memory through the BAM and the memory bus. There may also be an external bus including a connection to an external device, such as a memory device.
According to further aspects of the invention, there are methods of prioritizing and granting bus access requests. A method of prioritizing and granting bus access requests may comprise granting the bus access request of a requestor asserting a high priority interrupt if no requester is asserting the high priority interrupt, granting the bus access request of a requestor owning the current request slot. According to the method, access may be granted to a processor operating on a re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bus architecture and shared bus arbitration method for a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bus architecture and shared bus arbitration method for a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bus architecture and shared bus arbitration method for a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211188

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.