Burst error correction on DVD data

Error detection/correction and fault detection/recovery – Pulse or data error handling – Digital data error correction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C714S755000

Reexamination Certificate

active

06779149

ABSTRACT:

FIELD OF THE INVENTION
This invention concerns data processing. More particularly, the invention concerns error correction information useful in processing an incoming signal such as a signal obtained by reading media such as DVD discs.
BACKGROUND OF THE INVENTION
A digital data stream from an optical storage device can contain a serial data signal in a binary pattern. Digital data streams are read from various forms of digital media, including CD (compact disc) and DVD formats. CD formats include CD-ROM, CD-audio, CD-R (CD write once) and CD-RW. The data are typically read from selected data locations in order to recover the original data encoded on the storage media. The problem is that there may be dirt or other foreign material such as fingerprints, organic or inorganic substances. Additionally, there may be scratches on the media or defects stamped in the media during manufacturing that alter the data that is read. The presence of such interfering alterations can damage the data, resulting in elevated data error rates prior to data demodulation and correction.
In Reed-Solomon block encoding of DVD data, a P×Q block of data is supplemented with a first group of error control bytes within each of the P rows and with a second group of error control bytes along each of the Q columns of the block, usually at the end of each row or column. These supplemental error control bits allow the system to detect the presence of up to e(P;c) errors in a single column and up to e(Q;r) errors in a single row, if the number of errors in any column or row is not too large, where e(P;c) and e(Q;r) are selected positive integers. Where the number of errors in a given row or given column is too large, detection of presence of one or more errors is possible, but correction of an error in the given row or column is usually impossible using the Reed-Solomon approach. That given row or column must be corrected in some other manner, for example, by retransmission of the given row or column or block. The system may not recognize the presence of a burst error sequence, having too many errors in a given row or column, and may attempt to correct the data and accept the “corrected” data for later processing, which will produce erroneous results.
What is needed is an approach that allows a given row or column of bytes to be flagged in a clear and unambiguous sense for DVD media, where that row or column is tested and found to contain more than a permitted number of errors. Preferably, the approach should be extendible to an arbitrary size data block and should be flexible enough to permit some variation in the flags or other indicia used to indicate presence of burst errors.
SUMMARY OF THE INVENTION
When a defect on a disk is being read, defect detection circuitry will generate a defect detect signal that can be used to mark the data being written to a buffer. An error correction code (ECC) processor can easily determine if a codeword is correctable or uncorrectable, by checking the number of error markers in the codeword. If the number of error markers is greater than an error threshold number, the processor will mark the codeword as uncorrectable. If the number of error markers is no greater than the error threshold number, the processor can correct the error. However, if a defect signal is not provided and the number of corrupted symbols in a codeword is greater than the error threshold number, as where a burst error is present, the ECC processor may produce a “corrected” codeword that is not, in fact, fully corrected.
When a column (or row) in a data block is tested and found to contain more than a threshold number of errors, the symbol values (e.g., byte values) in a selected number of columns (or rows) in that block are associated with (or overwritten by) a distinguishable symbol value (“DSV”) whose presence is easily sensed. When one or more DSVs is sensed in a data block, that data block can be subjected to an error control treatment, other than error detection code (EDC) and Reed-Solomon ECC, to attempt to correct the errors and to recover the original correct data in the block.
According to the invention, when a column (or row) of the data block is found to have more than the threshold number of errors, a selected number w of (preferably consecutive) DSVs is placed in at least one column (or in at least one row) of the block. When the block is further processed and the presence of the DSVs is sensed, the system interprets this occurrence as indicating that a group of errors has occurred in a column and/or row of the block.
According to the invention, the determination is made for a serial data stream. The determination is made when reading disc media, which in a particular embodiment is disc media which in some instances conforms to the DVD format. The determination is made for disc media that conform to the DVD format and may also apply for disc media which conforms to a CD format.


REFERENCES:
patent: 5381422 (1995-01-01), Shimizu
patent: 5589994 (1996-12-01), Yamasaki et al.
patent: 5920578 (1999-07-01), Zook
patent: 6415411 (2002-07-01), Nakamura

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Burst error correction on DVD data does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Burst error correction on DVD data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Burst error correction on DVD data will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3286899

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.