Fluent material handling – with receiver or receiver coacting mea – Processes – With material treatment
Reexamination Certificate
2001-07-17
2003-05-06
Maust, Timothy L. (Department: 3751)
Fluent material handling, with receiver or receiver coacting mea
Processes
With material treatment
C141S044000, C141S048000, C141S069000, C141S091000, C141S286000, C055S414000, C055S417000, C055S426000, C096S147000, C096S189000
Reexamination Certificate
active
06557591
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to chemical delivery systems, and in particular to an apparatus and method for delivering a purified gaseous product that is sufficiently pure for use in the electronics industry, such as for semiconductor fabrication and processing. However, the invention is not limited to those applications and may have other uses, such as in commercial processes that use high purity gas from tanks or cylinders of compressed or liquefied gas.
Semiconductor manufacturers require high-purity gases and chemicals for production processes to avoid defects in the fabrication of semiconductor devices. Typical processing steps include using cleaning solvents for initial wafer preparation, wet etching, chemical vapor deposition, and the like. The presence of very minute amounts of impurities at any one step may result in contamination of the wafer, which may result in a reduction in semiconductor device yield or having to scrap the chip.
As semiconductor feature sizes continue to shrink, increasingly greater demands are placed on the required purity of the gases and chemicals used to produce semiconductor devices. As a means to increase yields, semiconductor fabrication facilities (“fabs”) commonly require process gases to meet particle specifications of less than 0.02 micron and metal specifications on the order of one part per billion or less. It is anticipated that industry standards will become more stringent in the future, as semiconductor feature sizes continue to shrink.
Electronic grades of process gases commonly have been supplied to semiconductor manufacturers in cylinders or tanks. However, as specifications regarding impurity concentrations have become more stringent, it has become more difficult to supply gases of sufficient purity for semiconductor processing. Even special preparation of the cylinders or containers by polishing and baking the inner surfaces fails to produce sufficient purity. Therefore, purifiers at the point of use often have been employed to remove contaminants and raise the purity of the gases on delivery.
Many prior art systems purify the gas after it exits the bulk container by using an external purifier. A disadvantage of this approach is that the piping between the bulk gas container and the external purifier is not protected in such systems. In addition, since the external purifier is required to withstand significant gas pressure, it can be very expensive.
Some gases are supplied in large, horizontal liquefied gas cylinders, such as “Y” cylinders. Examples include HCl, Cl
2
, and SF
6
. Large external purifiers are required to consistently and reliably meet the purity requirements of the processes using these gases. In addition to being expensive, these purifiers require a sizeable footprint in the facility layout.
In addition, the piping between the cylinder and purifier is not protected from the deleterious effects of moisture corrosion when moisture is present in the gas. This is particularly significant because the high pressure portions of the piping system are the most vulnerable to corrosion, since the partial pressure of moisture is the greatest at this point in a distribution system.
In attempting to address the problem, various approaches have been taken with in-tank purifiers. Although in-tank purifiers designed to remove contaminants from compressed gases or liquefied gases by high-pressure cylinders have been long known, as shown in U.S. Pat. No. 1,821,549 (Homer, et al.), problems remain and those prior art in-tank purifiers do not meet the current or future purity requirements of the electronics industry.
U.S. Pat. No. 5,409,526 (Zheng, et al.) discloses an apparatus for purifying gases delivered from vertical gas cylinders. The built-in purifier taught by Zheng, et al. works well for vertical cylinders. However, such a straight tube purifier cannot be used in horizontal liquefied gas cylinders, because the tube might become submerged below the liquid level, leading to unpredictable and potentially adverse results during product withdrawal.
Also, there are disadvantages of the valve taught by Zheng, et al., which uses a single dual ported valve for both filling and emptying the cylinder. The valve uses a single external connection and a two-way diverter valve communicates flow from the external connection to either: (a) the cylinder filling port, or (b) the gas withdrawal port. One disadvantage is that a customer or user must have a dual port valve. In addition to being costly, the availability of these valves is limited at times.
U.S. Pat. No. 5,980,599 (Chris, et al.) discloses an in-tank purifier using a displacable purifier body. The arrangement of this purifier also is limited to use in vertical cylinders, and the purifier would have similar problems with horizontal liquefied gas cylinders as discussed above for the built-in purifier of Zheng, et al.
It is desired to have an apparatus and method for delivering a purified gaseous product from a horizontal container having a built-in purifier, especially a gaseous product that may be used in the fabrication of semiconductor devices.
It is further desired to have an apparatus and method for delivering a purified gaseous product from a horizontal container having a built-in purifier that meets stringent purity requirements, such as the requirements for semiconductor manufacturing processes.
It is still further desired to have a more reliable apparatus and method for delivering a high-purity gaseous product for use in the electronics industry, such as for semiconductor manufacturing processes, from a horizontal container using single ported valves to fill the container with fluid and to withdraw the gaseous product.
It also is desired to have an apparatus and method for delivering high-purity gaseous products which overcome the difficulties and disadvantages of the prior art to provide better and more advantageous results.
BRIEF SUMMARY OF THE INVENTION
The invention is an apparatus and a method for delivering a purified gaseous product. There are several embodiments and variations of the apparatus and the method.
A first embodiment of the apparatus includes four elements. The first element is a substantially horizontal container adapted to contain a supply of a fluid. The container has a substantially horizontal longitudinal axis, at least one inner wall, a first end, a second end opposite the first end, an outlet port adjacent the first end, an inlet port spaced apart from the outlet port, and an open interior for containing the fluid between the at least one inner wall and the first and second ends. At least part of the open interior is a vapor space. The second element is an elongated hollow tube disposed in the open interior of the horizontal container. The elongated hollow tube has a first opening, a second opening spaced apart from the first opening, and an internal axis between the first and second openings. The first opening is in fluid communication with the outlet port and the second opening is in fluid communication with the vapor space. A portion of the internal axis adjacent the second opening is at an angle greater than zero degrees relative to the substantially horizontal longitudinal axis. The third element is a purifying medium disposed in at least a portion of the hollow tube between the first opening and the second opening. The fourth element is an inlet control means in fluid communication with the inlet port and adapted to control delivery of the fluid to the inlet port. The fifth element is an outlet control means in fluid communication with the outlet port and adapted to control delivery of the gaseous product from the outlet port.
There are several variations of the first embodiment of the apparatus. In one variation, the gaseous product is used in the fabrication of a semiconductor device. In another variation, the fluid is selected from a group consisting of a compressed gas, a liquefied compressed gas, and a supercritical fluid. In yet another variation, the purifying medium comprises at least one layer of a material s
Hertzler Benjamin Lee
Jarrett Lawrence Paul
Pearlstein Ronald Martin
Air Products and Chemicals Inc.
Chase Geoffrey L.
Maust Timothy L.
LandOfFree
Bulk gas built-in purifier with dual valve bulk container does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bulk gas built-in purifier with dual valve bulk container, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bulk gas built-in purifier with dual valve bulk container will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3038211