Bleaching and delignifying cellulosic pulp using...

Paper making and fiber liberation – Processes of chemical liberation – recovery or purification... – With regeneration – reclamation – reuse – recycling or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C162S030110, C162S050000, C162S076000, C162S082000, C205S690000, C423S513000

Reexamination Certificate

active

06511578

ABSTRACT:

This invention relates to a method of bleaching and/or delignifying cellulose using Caro's acid/caroate solution.
The traditional method of bleaching wood pulp for paper is to use large quantities of chlorine. However, since chlorinated lignin ranks among the environmentally toxic polychlorinated aromatics, increasing efforts have been made to replace the bleaching agent chlorine with other bleaching agents. The use of chlorine dioxide/chlorate as bleaching agent marked the start of a successful new era. Continuing efforts, however, are focused on replacing chlorine dioxide/chlorate with yet other bleaching agents, and thus to obtain TCF (Total Chlorine Free) pulp.
Bleaching agents which have been used to manufacture chlorine-free paper include ozone, oxygen and hydrogen peroxide. However, all these bleaching agents have disadvantages, such as insufficient delignification, insufficient brightness of the bleached cellulose and/or cost-intensive and/or dangerous production methods.
The use of caroate/Caro's acid (peroxymonosulphuric acid, H
2
SO
5
) as a bleaching agent for the bleaching and delignification of cellulose has also been suggested, especially for the chlorine-free bleaching of fine paper required to have a brightness level of 89 on the ISO scale. A disadvantage of using caroate/Caro's acid as bleaching agent, however, is the tedious process required to obtain the pure salt as a crystalline product. Pure Caro's acid, moreover, is an extremely corrosive substance, which makes storage and transport difficult.
The U.S. Pat. No. 5,366,593 describes a method of bleaching lignocellulose-containing material, in which, as reactants, the oxygen donor monoperoxy-sulphate and a ketone are used to form a water-soluble dioxirane on-site, which then acts as a bleach. The direct use of caroate/Caro's acid is not considered.
The U.S. Pat. No. 4,144,144 describes the production of sodium peroxydisulphate in an electrolytic cell, where the current efficiency can be increased by a suitable choice of anolyte.
The EP-A-O 415 149 A2 describes a method of bleaching and delignifying lignocellulose materials using peroxymonosulphuric acid and/or salts thereof in combination with oxygen and/or a peroxide. The peroxymonosulphuric acid is used in the form of its salt, or is obtained by reacting hydrogen peroxide with concentrated sulphuric acid. A similar process, in which peroxymonosulphuric acid is produced by reacting hydrogen peroxide and sulphuric acid, is also described by B. Amini et al. in Tappi Journal, Vol. 78, No. 10 (1995), 121-133.
The U.S. Pat. No. 4,049,786 describes a method of producing peroxymonosulphate by rapid hydrolysis of a peroxydisulphate with concentrated sulphuric acid, where active oxygen loss during hydrolysis can be suppressed by a suitable choice of reaction temperature.
WO-A-94/05851 describes a method of bleaching lignocellulose-containing pulp using peroxydisulphate.
The object of this invention was thus to provide a method with which the beneficial bleaching and delignification effects of Caro's acid/caroate can be exploited and, at the same time, the difficulties connected with the production of pure Caro's acid/caroate overcome and the danger of corrosion in storage and transport devices avoided.
This object is established according to the invention by a method of bleaching and/or delignifying cellulose, especially paper, in which
(a) a sodium hydroxide solution and a peroxydisulphate solution are first of all produced by electrolysis of a sulphate,
(b) the peroxydisulphate solution is converted by hydrolysis into Caro's acid/caroate solution,
(c) said Caro's acid/caroate solution is left to cool and
(d) used immediately as a bleaching solution for bleaching and/or delignifying cellulose, especially paper, the Caro's acid/caroate solution becoming neutralised upon introduction into the bleaching solution.
The method of the invention allows the use of Caro's acid/caroate in the form of a solution, which means that the disadvantages connected with the pure crystalline product can be avoided. These disadvantages are, in particular, the tedious process required to obtain the pure salt in crystalline form, and the corrosive nature of Caro's acid.
It is an essential feature of the invention that Caro's acid/caroate solution can be produced either in, or in the immediate vicinity of a pulp or paper mill, so that long transport distances—which necessitate separating off the water from the solution and obtaining the product in pure form—can be avoided. Protracted storage or transport over long distances require that the water first be separated off to form pure Caro's acid/caroate because, on the one hand, the pure product is in itself more stable than a solution thereof, which means it can be stored for longer, and on the other hand, the proportion of water in the solution makes transport over long distances considerably more difficult and expensive.
Production of Caro's acid/caroate either in, or in the immediate vicinity of a pulp or paper mill is realized by first of all producing a sodium hydroxide solution and a peroxydisulphate solution, for example sodium peroxydisulphate, potassium peroxydisulphate and/or calcium peroxydisulphate, by electrolysis of a sulphate, for example sodium sulphate, potassium sulphate and/or calcium sulphate. The peroxydisulphate solution can then be converted by hydrolysis into Caro's acid/caroate solution. Whereas this production process can be carried out without any danger in the proximity of wood, cellulose or paper, the conventional production of caroate from oleum and 70% hydrogen peroxide is extremely risky, since any contact between the starting materials and wood, cellulose or paper will cause a fire. This is the reason why it was hitherto not possible to produce Caro's acid/caroate in the vicinity of a pulp or paper mill.
Another advantage of simultaneously producing a peroxydisulphate solution and a sodium hydroxide solution by means of electrolysis is that pulp and paper mills often have inexpensive electricity from hydroelectric power stations, and that waste sulphate from sulphate cellulose can be put to economic use. It is preferable if the proportion of waste sulphate from sulphate cellulose accounts for more than 5 wt. % of the total amount of sulphate used in step (a), especially preferable if it accounts for more than 50 wt. % and most preferable of all if it accounts for more than 90 wt. % thereof.
According to the invention, the peroxydisulphate solution produced by electrolysis is then converted by way of hydrolysis into Caro's acid/caroate solution. On cooling, this Caro's acid/caroate solution was found to be relatively stable. Through addition of H
2
O
2
during hydrolysis, the decomposition of Caro's acid/caroate can be minimised further. According to the invention, the Caro's acid/caroate solution obtained is used immediately as a bleaching solution for bleaching and/or delignifying cellulose, especially paper. The Caro's acid/caroate solution can be introduced—for example by way of a direct pipeline or in form of a bulk transport—into the bleaching solution. It is thus unnecessary, according to the invention, to produce Caro's acid/caroate in crystalline form.
According to the invention, the Caro's acid/caroate solution is neutralised upon introduction into the bleaching solution. It is beneficial to neutralise the Caro's acid/caroate solution at this point in time because a pH <5 promotes the stability of Caro's acid/caroate solution. Another reason is that the heat of neutralisation is distributed in the bleaching solution, thus reducing decomposition of the caroate solution/ Caro's acid still further.
As already mentioned, it is essential to the invention that the method of the invention can be carried out either in, or in the immediate vicinity of a pulp or paper mill. An added advantage of such an arrangement is that large paper mills usually already have a chlorin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bleaching and delignifying cellulosic pulp using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bleaching and delignifying cellulosic pulp using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bleaching and delignifying cellulosic pulp using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3041337

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.