Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices
Reexamination Certificate
2001-02-23
2004-07-27
Budd, Mark (Department: 2834)
Electrical generator or motor structure
Non-dynamoelectric
Piezoelectric elements and devices
C310S317000, C310S319000, C310S330000, C310S800000
Reexamination Certificate
active
06768246
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to ElectroActive Polymers (EAP) that convert between electrical energy and mechanical energy. More particularly, the present invention relates to polymers and their use as generators for harvesting electrical energy from unused biologically generated energy sources such as the forces generated when a person's foot contacts a surface during bipedal motion.
In many applications, it is desirable to convert between electrical energy and mechanical energy. Exemplary applications requiring translation from electrical to mechanical energy include robotics, pumps, speakers, general automation, disk drives and prosthetic devices. These applications include one or more actuators that convert electrical energy into mechanical work—on a macroscopic or microscopic level. Common electric actuator technologies, such as electromagnetic motors and solenoids, are not suitable for many of these applications, e.g., when the required device size is small (e.g., micro or mesoscale machines). Exemplary applications requiring translation from mechanical to electrical energy include mechanical property sensors and heel strike generators. These applications include one or more transducers that convert mechanical energy into electrical energy. Common electric generator technologies, such as electromagnetic generators, are also not suitable for many of these applications, e.g., when the required device size is small (e.g., in a person's shoe). These technologies are also not ideal when a large number of devices must be integrated into a single structure or under various performance conditions such as when high power density output is required at relatively low frequencies.
Several ‘smart materials’ have been used to convert between electrical and mechanical energy with limited success. These smart materials include piezoelectric ceramics, shape memory alloys and magnetostrictive materials. However, each smart material has a number of limitations that prevent its broad usage. Certain piezoelectric ceramics, such as lead zirconium titanate (PZT), have been used to convert electrical to mechanical energy. While having suitable efficiency for a few applications, these piezoelectric ceramics are typically limited to a strain below about 1.6 percent and are often not suitable for applications requiring greater strains than this. In addition, the high density of these materials often eliminates them from applications requiring low weight. Irradiated polyvinylidene difluoride (PVDF) when combined with various copolymers is an electroactive polymer reported to have a strain of up to 4 percent when converting from electrical to mechanical energy. Similar to the piezoelectric ceramics, the PVDF-based material is often not suitable for applications requiring strains greater than 4 percent. Shape memory alloys, such as nitinol, are capable of large strains and force outputs. These shape memory alloys have been limited from broad use by unacceptable energy efficiency, poor response time and prohibitive cost.
In addition to the performance limitations of piezoelectric ceramics and irradiated PVDF-based materials, their fabrication often presents a barrier to acceptability. Single crystal piezoelectric ceramics must be grown at high temperatures coupled with a very slow cooling down process. Irradiated PVDF-based materials must be exposed to an electron beam for processing. Both these processes are expensive and complex and may limit acceptability of these materials.
As advances in microchip fabrication continue to reduce the cost and the size of logic devices while increasing their computing capabilities, new portable electronic devices using these logic devices are continually being developed. Also, these logic devices are being incorporated into existing electronic devices to increase their functionality and in some case to enable portability. Cellular phones, pagers, personal digital assistants, MP-3 players, navigational devices and locator devices are a few examples of newer portable electronic devices. These portable electronic devices along with other older portable electronic devices such as flashlights, electric tools, credit card readers and radios are utilized in many activities. All of these devices require a source of electrical energy to operate. Typically, the devices employ disposable or rechargeable batteries as an electrical power source. Performance parameters of the batteries such as cost, weight and life-time are critical element in the design and operation of these devices.
With the portable electronics devices describe above, it would be desirable to reduce or eliminate the need to constantly recharge or replace the batteries that power the devices. One approach to meet this need is to harvest energy from unused biological and environment energy sources. For instance, solar energy may be converted to electrical energy to provide a power source. However, a disadvantage of solar energy is the low energy density of solar power limits the portability solar collectors. Further, solar power does not provide power at night or on cloudy days. Another approach for providing power for portable electronic devices may be to convert unused mechanical energy generated from a biological or an environmental energy source. For instance, a significant portion of the mechanical energy generated while a person is walking is typically unused. In view of the foregoing, alternative devices that efficiently convert unused biological energy sources or unused environmental energy sources to electrical energy would be desirable.
SUMMARY OF THE INVENTION
This invention addresses the needs indicated above by providing generators with one or more transducers that use electroactive polymer films to convert mechanical energy to electrical energy. The generators may include one or more transmission mechanisms that transfer a portion of an unused biological energy source, an unused environmental energy source or combinations of both to the one or more transducers located in the generator. The energy received by the transducers may be converted to electrical energy by the transducers in conjunction with conditioning electronics located within the generator. One embodiment of the present invention provides a heel-strike generator integrated into to the heel of footwear to convert mechanical energy generated during human bipedal motion to electrical energy.
One aspect of the present invention provides a generator for converting biologically-generated mechanical energy to electrical energy. The generator may be generally characterized as including: 1) one or more transducers where each transducer comprises at least two electrodes and a polymer arranged in a manner which causes a change in electric field in response to a deflection applied to a portion of the polymer; 2) conditioning electronics connected to the at least two electrodes and designed or configured to remove electrical energy from the one or more transducers where the conditioning electronics are designed or configured to perform one or more of the following functions: voltage step-up, voltage step-down and charge control; and 3) one or more transmission mechanisms that are designed or configured to receive biologically-generated mechanical energy and to transfer a portion of the biologically-generated mechanical energy to the polymer where the transferred portion of the biologically generated mechanical energy results in a deflection in the portion of the polymer. The biologically-generated mechanical energy may be generated from a biological system selected from the group consisting of a human, animals or both. The polymer may comprise a material selected from the group consisting of silicone elastomers, acrylic elastomers, polyureathanes, copolymers comprising PVDF and combinations thereof. The polymer may be configued in a manner which consists of stacked multilayers to increase active area and thus to increase electrical energy per motion.
The biologically-generated mechanical energy may
Eckerle Joseph Stephen
Garcia Pablo E.
Kornbluh Roy D.
Oh Seajin
Pelrine Ronald E.
Beyer Weaver & Thomas
Budd Mark
SRI - International
LandOfFree
Biologically powered electroactive polymer generators does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Biologically powered electroactive polymer generators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biologically powered electroactive polymer generators will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3234018