Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
2011-07-12
2011-07-12
Gussow, Anne M. (Department: 1643)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C530S387300, C424S133100
Reexamination Certificate
active
07977071
ABSTRACT:
The present invention relates to immunoglobulin new antigen receptors (IgNARs) from fish and uses thereof. In particular, the present invention relates to modified IgNAR variable domains and to domains from members of the immunoglobulin superfamily that have been modified to include structural features derived from IgNAR variable domains.
REFERENCES:
patent: 4179337 (1979-12-01), Davis et al.
patent: 5955363 (1999-09-01), Lewis et al.
patent: 7166697 (2007-01-01), Galanis et al.
patent: 368684 (1994-03-01), None
patent: 239400 (1994-08-01), None
patent: WO 90/05144 (1990-05-01), None
patent: WO 91/08482 (1991-06-01), None
patent: WO 94/25591 (1994-11-01), None
patent: WO 96/34103 (1996-10-01), None
patent: WO 97/27213 (1997-07-01), None
patent: WO 03/014161 (2003-02-01), None
patent: WO 03/050531 (2003-06-01), None
Nuttall, Humberstone, Krishnan, Carmichael, Doughty, Hattarki, Coley, Casey, Anders, Foley, Irving and Hudson. Selection and affinity maturation of IgNAR variable domains targetingPlasmodium falciparumAMA1. Proteins, 2004. vol. 55, pp. 187-197.
Nuttall, Krishnan, Doughty, Pearson, Ryan, Hoogenraad, Hattarki, Carmichael, Irving, and Hudson. Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70. European Journal of Biochemistry, 2003. vol. 270, pp. 3543-3554.
Agrawal, A. et al. ‘Implications of transposition mediated by V(D)J-recombination proteins RAG1 and RAG2 for origins of antigen-specific immunity’,Nature394: 744-751 (1998).
Blundell et al., ‘Knowledge-based protein modeling and design’,Eur. J. Biochem, 172: 513-520 (1988).
Bork, P. et al. ‘The immunoglobulin fold: structural classification, sequence patterns and common core’,J. Mol. Biol., 242: 309-320 (1994).
Brandl, M. et al. ‘π-Interactions in Proteins’,J. Mol. Biol., 307: 357-377 (2001).
Brünger, A.T. et al., ‘Recent developments for the efficient crystallographic refinement of macromolecular structures’,Current Opinions in Structural Biology, 8(5): 606-611 (1998a).
Bruns, C.M. et al., ‘Human Glutathione Transferase A4-4 Crystal Structures and Mutagenesis Reveal the Basis of High Catalytic Efficiency with Toxic Lipid Peroxidation Products’,J. Mol. Biol. 288(3): 427-439 (1999).
Casasnovas, J.M. et al. ‘A Dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecular-1’,Proc. Natl. Acad. Sci. USA, 95: 4134-4139 (1998).
Casey, J.L. et al., ‘Tumour targeting of humanised cross-linked divalent-fab′ antibody fragments: a clinical phase I/II study’,Br J Cancer, 86(9): 1401-10 (2002).
Chothia, C. et al., ‘Conformations of immunoglobulin hypervariable regions’,Nature342: 877-883 (1989).
Chothia, C. & Jones, E.Y. ‘The molecular structure of cell adhesion molecules’Annu. Rev. Biochem., 66: 823-862 (1997).
Chothia, C. et al., ‘Structural determinants in the sequences of immunoglobulin variable domain’,J. Mol. Biol. 278: 457-479 (1998).
Davies, J. & Riechmann, L., ‘Camelising human antibody fragments: NMR studies on VH domains’,FEBS Lett., 339(3): 285-290 (1994).
Davies, J. & Riechmann, L., ‘Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability’,Protein Eng., 9(6): 531-537 (1996).
Desmyter, A. et al., ‘Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme’,Nat. Struct. Biol. 3: 803-811 (1996).
Desmyter, A. et al., ‘Three camelid VHH domains in complex with porcine pancreatic alpha-amylase. Inhibition and versatility of binding topology’,J. Biol. Chem. 277: 23645-23650 (2002).
Diaz, et al., Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: Possible role in antigen-driven reactions in the absence of germinal centers. Proc. Natl. Acad. Sci. USA 95:14343-14348 (1998).
Diaz, M. et al., ‘Mutational paterns of nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation’,Int. Immunol., 11: 825-833 (1999).
Diaz, M. et al., ‘Structural analysis, selection and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development’,Immunogenetics, 54: 501-512 (2002).
Dooley, H. et al., ‘Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display’,Mol. Immunol. 40: 25-33 (2003).
Dunbrak et al., ‘Meeting review: the second meeting on the critical assessment of techniques for protein structure prediction (CASP2), Asilomar, California, Dec. 13-16, 1996’Folding and Design, 2: 27-42 (1997).
Greenberg, A.S. et al., ‘A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks’,Nature, 374: 168-173 (1995).
Greer, ‘Model structure for the inflammatory protein C5a’,Science, 228: 1055 (1985).
Harpaz, Y. & Chothia, C. ‘Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains’,J. Mol. Biol., 238: 528-539 (1994).
Hodder, A.N. et al., ‘The disulfide bond structure ofPlasmodiumapical membrane antigen-1’,J. Biol. Chem. 271: 29446-29452 (1996).
Holden, H.M. et al., ‘X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 angstroms resolution’,J. Mol. Biol., 227: 840-851 (1992).
Hong, L. et al., ‘Structure of the protease domain of memapsin 2 (β-Secretase) complexed with inhibitor’,Science, 290: 150-153 (2000).
Jespers, L. et al., ‘Crystal structure of HEL4, a soluble, refoldable human VH single domain with a germ-line scaffold’,J. Mol. Biol., 337: 893-903 (2004).
Kortt, A.A. et al., ‘Solution properties ofE. coliepressed VH domain of anti-neuraminidase antibody NC41’,J. Protein Chem., 14: 167-178 (1995).
La Fortelle, E. & Bricogne, G., ‘Maximum likelihood heavy-atom parameter refinement program for the Multiple Isomorphous Replacement and Multiwavelength Anomalous Diffraction methods’, in Carter, C.W. & Sweet, R.M. eds.,Meth. Enzym., 276: 472-494, Academic Press: Orlando, FL (1997).
Lamzin, V.S. & Wilson, K.S. ‘Automated refinement for protein crystallography’,Methods Enzymol., 277: 269-305 (1997).
Lee, Y.S. & Mrksich, M., ‘Protein chips: from concept to practice’Trends Biotechnol., 20(12 Suppl.): S14-8 (2002).
Lo Conte, L. et al., ‘The atomatic structure of protein-protein recognition sites’,J. Mol. Biol., 285: 2177-2198 (1999).
Low, N.M. et al., ‘Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain’J Mol Biol, 26o: 359-368 (1996).
Lu, G., ‘TOP: a new method for protein structure comparisons and similarity searches’,J Appl Crystellog, 33: 176-183 (2000).
McLachan, ‘Gene duplications in the structural evolution of chymotrypsin’J. Mol. Biol., 128: 49 (1979).
McRee, D.E. ‘Xtal/view/xfit—a versatile program for manipulating atomic coordinates and electron density’,J. Struct. Biol., 125: 156-165 (1999).
Minsky, A. et al., ‘Secretion of beta-lactamase into the periplasm pfEscherichia coli: evidence for distinct release step associated with a conformational change’,Proc. Natl. Acad. Sci. USA, 83: 4180-4184 (1986).
Muyldermans, S. et al., ‘Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains’,Prot
Barraclough Miles Mackay
Carmichael Jennifer Ann
Griffiths Katherine Merne
Henderson Kylie Anne
Hudson Peter
Adalta Pty Ltd.
Gussow Anne M.
Medlen & Carroll LLP
LandOfFree
Binding moieties based on shark ignar domains does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Binding moieties based on shark ignar domains, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Binding moieties based on shark ignar domains will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2711637