Refrigeration – Withdrawable liquid – e.g. – dispenser – With agitator for withdrawable liquid
Reexamination Certificate
2003-02-19
2004-07-20
Tapolcai, William E. (Department: 3744)
Refrigeration
Withdrawable liquid, e.g., dispenser
With agitator for withdrawable liquid
C062S393000, C062S394000
Reexamination Certificate
active
06763676
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to beverage dispensers, and in particular to beverage dispensers designed for ease of assembly and maintenance and that provide for efficient cooling.
2. Background
Beverage dispensers are well known in the art and are generally of the post-mix or pre-mix variety. As is known, post-mix dispensers mix carbonated or flat water at a particular ratio with a concentrated syrup to produce a finished drink. Pre-mix dispensers simply dispense a finished drink that has been previously produced and filled into pre-mix containers at a beverage bottling facility. Such dispensers include means for cooling the beverage or the separate beverage constituents and a plurality of valves for dispensing thereof. In the case of electrically cooled post-mix dispensers, a refrigeration system including a compressor, condenser and evaporator are typically used to cool a water bath. The evaporator is positioned in the water bath and cooled to from a layer of ice or ice bank thereon to provide for a cooling reserve. The beverage constituents flow through heat exchange lines retained in the water bath for cooling thereof as they flow to the dispensing valves. The compressor and condenser and associated electrical components are generally secured by screws or bolts to a plate that is itself fastened to the top of the water bath tank.
A problem with prior art dispensers of the type described above concerns the time required for assembly thereof. Assembly times can exceed eight hours per dispenser resulting in relatively high labor costs. A large part of the labor input concerns the securing together of the various parts, generally using fastening means such as screws manipulated either manually, with hand tools, or with the use of power tools. It would be highly desirable to reduce or eliminate such time consuming means of fastening. However, the substitute means for attaching must have or approximate the strength, flexibility of application and durability of screw attachment approaches.
A further problem concerns the exterior surfaces of such dispensers. As is well known, beverage dispensers come in various sizes depending upon the numbers of individual valves provided by the particular machine and the volume of beverage that the dispenser is designed to handle at peak dispense times. With respect to varying the number of valves, the dispenser gets wider in a horizontal direction with an increase in the number thereof as the valves are installed side-by-side horizontally. Prior art dispensers have exteriors that include sheet metal panels that do not easily provide for any commonality of assembly of such exterior components between dispensers of various sizes. Accordingly it would be desirable to have the various exterior surfaces of a beverage dispenser consist of components that can provide for such commonality. It would also be desirable for such components to be able to be assembled without the need of hand or power tools.
An additional problem with beverage dispensers concerns the ability of the exterior surfaces thereof to provide for point of purchase advertising thereon in a way that uses the maximum available surface area thereof. Many beverage dispensers are located in areas that are readily viewable by the consuming public. While this is obviously the case for machines of the “self-serve” variety that are operated by the individual consumer, this is also often the case for machines that are operated by service personnel. It has long been known to use the exterior surface of such dispensers for the placement thereon of advertisements as an enticement to consumers to purchase a beverage and also to inform the public as to the brand and flavors of products being dispensed. Unfortunately, changing such advertising artwork is not easily done. Especially, where the advertising graphics are applied directly to, for example, an exterior sheet metal housing of the dispenser, which housing is not made to be easily removed from the dispenser and/or which graphics are not easily removed from the housing surface. In dispensers utilizing roto-molded plastic ice bath tanks, the plastic exterior of such tanks forms a portion of the exterior surface of the dispenser. Unfortunately, such tank surfaces are not amenable to the placement thereon of advertising artwork due to surface irregularities inherent in the roto-molding process. Thus, approximately 50% of the exterior surfaces of such dispensers are not available for advertising display. Accordingly, it would be very desirable to have a dispenser that provides for the maximum utilization of the exterior surface area thereof for the purpose of advertising display. It would also be desirable to have a dispenser that can be easily converted from opaque graphic display to one utilizing a back-lit transparency.
A further problem with beverage dispensers concerns the efficiency of operation of the refrigeration system and the ice bank. As stated above, many such dispensers utilize an ice bath for retaining the evaporator for forming a volume of ice thereon. This ice bank provides for a cooling reserve that can be used during times of high cooling demand when beverages are being dispensed at a high rate. Thus, the refrigeration system does not have to be sized to provide for all of the cooling at such peak dispense times. However, a problem with such cooling strategy is the fact that ice is a relatively good insulator. Thus, the thicker the ice that forms on the evaporator the more the evaporator is insulated from cooling the bath water, resulting in less efficient cooling thereof. As a result thereof, there is a tradeoff between amount of cooling reserve and efficiency of operation of the evaporator. A further problem concerns the fact that as the ice bank grows on the evaporator tubes and bridges there between, less surface area of the formed ice is in thermal contact with the water bath. The less efficient cooling that occurs as a result of ice insulating the evaporator and reduction in the surface area of the ice bank reduces the cooling ability of the water bath with respect to heat exchange between it and the beverage constituent coils. Thus, beverage is not able to be cooled as efficiently as possible. Accordingly, it would be highly desirable to have an ice bank/evaporator structure and management strategy that maximizes heat exchange between the water in the water bath tank, the ice bank and the liquid beverage components in the product coils.
It is known in the prior art to use syrup pumps to move the beverage syrup from sources thereof to the post-mix valves. And, it is known to have the pumps located either exterior of the dispenser or located there within. However, the dispenser must generally be configured one way or the other at the factory. It would be desirable to have a dispenser that could be field configurable between an internal or external syrup pump configuration.
SUMMARY OF THE INVENTION
The present invention is a beverage dispenser that can be assembled virtually entirely by hand without the need for hand or power tools. In addition, a novel approach to forming the exterior surfaces thereof is provided. A new structure and method of ice bank construction and control is also shown.
The dispenser herein includes an ice bath tank for retaining a volume of water and in which an evaporator is positioned along with a carbonator and a plurality of water and syrup heat exchange tubes. The water bath tank includes four bottom legs having tabs that provide for sliding retaining cooperation with corresponding slots located in a dispenser base. A refrigeration deck includes slots for receiving tabs extending upward from the top end of the water bath. The water bath tabs include holes for cooperating with metal pins that insert therein for retaining the refrigeration deck in place on top of the water bath.
A rear panel is secured to the base by a snap fit therein and by slots receiving mounting pins extending from a top perimeter surface of the water bath tank.
Currier Peter J.
Duchene Russell J.
Farooqui Amir
Jones Brian C.
Rogala Allen L.
Ali Mohammad M.
Pyle & Piontek
Tapolcai William E.
LandOfFree
Beverage dispenser does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Beverage dispenser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Beverage dispenser will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3228761