Beam conditioning system

X-ray or gamma ray systems or devices – Specific application – Diffraction – reflection – or scattering analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C378S145000

Reexamination Certificate

active

07076026

ABSTRACT:
The present invention provides an x-ray beam conditioning system with a Kirkpatrick-Baez diffractive optic including two optical elements, of which one of the optical elements is a crystal. The elements are arranged in a side-by-side configuration. The crystal can be a perfect crystal. One or both diffractive elements can be mosaic crystals. One element can be a multilayer optic. For example, the multilayer optic can be an elliptical mirror or a parabolic mirror with graded d-spacing. The graded d-spacing can be either lateral grading or depth grading, or both.

REFERENCES:
patent: 2941078 (1960-06-01), Montel
patent: 4174478 (1979-11-01), Franks
patent: 4242588 (1980-12-01), Silk et al.
patent: 4525853 (1985-06-01), Keem et al.
patent: 4958363 (1990-09-01), Nelson et al.
patent: 5027377 (1991-06-01), Thoe
patent: 5259013 (1993-11-01), Kuriyama et al.
patent: 5604782 (1997-02-01), Cash, Jr.
patent: 5799056 (1998-08-01), Gutman
patent: 6014423 (2000-01-01), Gutman et al.
patent: 6041099 (2000-03-01), Gutman et al.
patent: 6330301 (2001-12-01), Jiang
patent: 6493421 (2002-12-01), Gutman
patent: 2004/0170250 (2004-09-01), Verman et al.
patent: 299 24 462 (2003-07-01), None
patent: 0 459 833 (1991-05-01), None
patent: 1 060 478 (2003-05-01), None
patent: WO96/04665 (1996-02-01), None
patent: WO99/43008 (1999-08-01), None
patent: WO 99/43009 (1999-08-01), None
patent: WO 00/62306 (2000-10-01), None
patent: WO01/009904 (2001-02-01), None
XP-002104740—X-Ray Microscope With Multilayer Mirrors—J. Underwood; T. Barbee & C. Frieber—Applied Optics—vol. 25, No. 11-Jun. 1, 1986.
XP-002104741—Medium-Sized Grazing Incidence High-Energy X-Ray Telescopes Employing Continuously Graded Multilayers—K. Joensen; C. Schnopper; G. Gorenstein; J. Susini; J. Wood; K. Parker—SPIE vol. 1736 X-Ray Detector Physics and Applications (1992)—239.
XP-002104742—GeoCARS Microfocusing Kirkpatrick-Baez Mirror Bender Development—M Rivers; W. Schildkamp; P. Eng—1995 American Institute of Physics.
Improved Prompt Gamma Neutron Activation Analysis Facility Using a Focused Diffracted Neutron Beam—1998 Elsevier Science B.V., Nuclear Instruments and Methods in Physics Research B 143 (1998) 414-421.
X-Ray Microscopy, V.E. Cosslet; W.C. Nixon, Cambridge At The University Press, 1960, pp. 107-110, p. 396.
Encyclopedia of Physics, S. Flügge, vol. XXX, X-Rays; Springer-Verlag, Berlin, Gottingen, Heidelberg, 1957, p. 325, p. 336.
XP-000280838—Kirkpatrick-Baez Microprobe on the Basis of Two Linear Single Crystal Bragg-Fresnel Lenses, U. Bonse, C. Riekel, A. A. Snigirev, Review of Scientific Instruments, American Institute of Physics, New York, US, vol. 63, No. 1 PT 2A, 1992, pp. 622-624.
XP-002289276—Microfocusing Source and Multilayer Optics Based X-Ray Diffraction Systems, Boris Verman, Licai Jiang and Bonglea Kim, The Rigaku Journa, vol. 19, No. 1, 2002, pp. 4-13.
XP-009039739—Basic Principle and Performance Characteristics of Multilayer Beam Conditioning Optics, Licia Jiang, Zaid Al-Mosheky, and Nik Grupido, vol. 17, No. 2, Jun. 2002 pp. 81-93.
XP-001203751—Diffractive Optics Bend, Shape and Filter X-Ray Light—Nicola J. Nicola J. Grupido, and Ronald L. Remus, vol. 34, No. 3, Mar. 1998, pp. 115-117.
E. Ziegler, O. Hignette, Ch. Morawe, R. Tucoulou, High-efficiency turnable X-ray focusing optics using mirrors and laterally-graded multilayers, Nuclear Instruments and Methods in Physics Research, A 467-468, 2001, pp. 954-957.
Y. Suzuki, F. Uchida, Hard x-ray microprobe with total-reflection mirrors, Rev. Sci. Instrum. 63 (1), Jan. 1992, pp. 578-581.
P. Dhez, P. Chevallier, T.B. Lucatorto, C. Tarrio, Review Article, Instrumental aspects of x-ray microbeams in the range above 1 keV, Review of Scientific Instruments, vol. 70, No. 4, Apr., 1999, pp. 1907-1920.
P. Chevallier, P. Dhez, A. Erko, A. Firsov, F. Legrand, P. Populus, X-ray microbrobes, Nuclear Instruments and Methods in Physics Research 8 113, 1996, pp. 122-127.
G.E. Ice, Jin-Seok Chung, W. Lowe, E. Williams, J. Edelman, Small-displacement monochromator for microdiffraction experiments, Review of Scientific Instruments, vol. 71, No. 5, May 2000, pp. 2001-2006.
P. Dhez, A. Erko. E. Khzmalian, B. Vidal, V. Zinenko, Kirkpatric-Baez microscope based on a Bragg-Fresnel x-ray multilayer focusing system, Applied Optics, vol. 31, No. 31, Nov. 1, 1992, pp. 6662-6667.
Recent Developments of Multilayer Mirror Optics for Laboratory X-Ray Instrumentation—C. Michaelsen; J. Wiesmann; C. Hoffman; K. Wulf; L. Brügemann; A. Storm: INCOATEC GmbH and GKSS Research Center, Max-Planck-Str., 21502 Geesthacht, Germany, Bruker AXS GmbH, Östl. Rheinbrückenstr. 49, 76187 Karlsruhe, Germany, Bruker Nonius BV, Oostingel 209, 2612 HL Delft, The Netherlands.
The X-Ray Microscope with Catamegonic Roof-Shaped Objective; M. Montel, Laboratoire de Chimie Physique de la Faculté des Schiences, Université de Paris, Paris, France, pp. 177-185.
Theory of Image Formation In Combinations of X-Ray Focussing Mirrors, Y.T. Thathachari, Department of Physics, Indian Institute of Science, Bangalore-3, Sep. 6, 1952, pp. 41-62.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Beam conditioning system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Beam conditioning system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Beam conditioning system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3605255

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.